

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

revel.github.io

[image: https://travis-ci.org/revel/revel.github.io.svg?branch=master]Build Status [https://travis-ci.org/revel/revel.github.io]

Documentation for the Revel framework [https://github.com/revel/revel]

This jekyll [http://jekyllrb.com/] powered site is located at revel.github.io [http://revel.github.io].

To compile and view the site locally:

$ gem install jekyll kramdown jekyll-redirect-from octopress-escape-code
$ git clone git@github.com:revel/revel.github.io.git
$ cd revel.github.io
$ jekyll serve

Important
Due to a bug in some versions of jekyll, you may get a lot of console output such as

Regenerating: 97 files at 2015-01-17 22:46:09 ...done.
Regenerating: 97 files at 2015-01-17 22:46:28 ...done.
... snipped ...
Regenerating: 97 files at 2015-01-17 22:47:44 ...done.
Regenerating: 97 files at 2015-01-17 22:48:03 ...done.

In this case start jekyll with the ‘destination’ directory outside the tree, eg

$ jekyll serve -d ../revel_site_build

title: Booking
layout: examples
godoc:
- Controller
- InterceptMethod
- Flash

The Booking sample app demonstrates:

	Using an SQL (SQLite) database and configuring the Revel DB module.

	Using the third party GORP [https://github.com/go-gorp/gorp] ORM-ish library

	Interceptors for checking that a user is logged in.

	Using validation and displaying inline errors

 Browse Source

	booking/app/
		models		 # Structs and validation.
			booking.go
			hotel.go
			user.go

		controllers
			init.go # Register all of the interceptors.
			gorp.go # A plugin for setting up Gorp, creating tables, and managing transactions.
			app.go # "Login" and "Register new user" pages
			hotels.go # Hotel searching and booking

		views
			...

sqlite Installation

The booking app uses go-sqlite3 [https://github.com/mattn/go-sqlite3] database driver (which wraps the native C library).

To install on OSX:

	Install Homebrew [http://mxcl.github.com/homebrew/] if you don’t already have it.

	Install pkg-config and sqlite3:

$ brew install pkgconfig sqlite3

To install on Ubuntu:

$ sudo apt-get install sqlite3 libsqlite3-dev

Once you have SQLite installed, it will be possible to run the booking app:

$ revel run github.com/revel/examples/booking

Database / Gorp Plugin

app/controllers/init.go [https://github.com/revel/examples/blob/master/booking/app/controllers/init.go]
initializes the users requests:

	BeforeRequest: Begins a transaction and stores the Transaction on the Controller

	AfterRequest: Commits the transaction. Panics if there was an error.

conf/app.conf [https://github.com/revel/examples/blob/master/booking/conf/app.conf]
tells revel how to initialize GORP, and to include the GORP module.

app/controllers/app.go [https://github.com/revel/examples/blob/master/booking/app/controllers/app.go#L17]
The controllers embed the gorpController.Controller. This controller makes the database
connection available inside it and provides commit and rollback functionality

Interceptors

app/controllers/init.go [https://github.com/revel/examples/blob/master/booking/app/controllers/init.go]
registers the interceptors that run before every method (InterceptorMethod [https://godoc.org/github.com/revel/revel#InterceptorMethod]):

func init() {
	revel.OnAppStart(Init)
	revel.InterceptMethod(Application.AddUser, revel.BEFORE)
	revel.InterceptMethod(Hotels.checkUser, revel.BEFORE)
}

As an example, checkUser looks up the username in the session and redirects
the user to log in if they are not already.

func (c Hotels) checkUser() revel.Result {
	if user := c.connected(); user == nil {
		c.Flash.Error("Please log in first")
		return c.Redirect(Application.Index)
	}
	return nil
}

Check out the user management code in app.go [https://github.com/revel/examples/blob/master/booking/app/controllers/app.go]

Validation

The booking app does quite a bit of validation.

For example, here is the routine to validate a booking, from
models/booking.go [https://github.com/revel/examples/blob/master/booking/app/models/booking.go]:

func (booking Booking) Validate(v *revel.Validation) {
	v.Required(booking.User)
	v.Required(booking.Hotel)
	v.Required(booking.CheckInDate)
	v.Required(booking.CheckOutDate)

	v.Match(b.CardNumber, regexp.MustCompile(`\d{16}`)).
		Message("Credit card number must be numeric and 16 digits")

	v.Check(booking.NameOnCard,
		revel.Required{},
		revel.MinSize{3},
		revel.MaxSize{70},
)
}

Revel applies the validation and records errors using the name of the
validated variable (unless overridden). For example, booking.CheckInDate is
required; if it evaluates to the zero date, Revel stores a ValidationError in
the validation context under the key “booking.CheckInDate”.

Subsequently, the
Hotels/Book.html [https://github.com/revel/examples/blob/master/booking/app/views/Hotels/Book.html]
template can easily access them using the field helper:

{% capture ex %}{% raw %}

{{with $field := field "booking.CheckInDate" .}}
<p class="{{$field.ErrorClass}}">
 Check In Date:
 <input type="text" size="10" name="{{$field.Name}}" class="datepicker" value="{{$field.Flash}}">
 * {{$field.Error}}
ss</p>
{{end}}

{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}

The field template helper looks for errors in the validation context, using
the field name as the key.

title: Chat room
layout: examples

The Chat app demonstrates:

	Using channels to implement a chat room with a publish-subscribe [http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern] model.

	Using Comet and Websockets

 Browse Source

Here are the contents of the app:

chat/app/
	chatroom	 # Chat room routines
		chatroom.go

	controllers
		app.go # The welcome screen, allowing user to pick a technology
		refresh.go # Handlers for the "Active Refresh" chat demo
		longpolling.go # Handlers for the "Long polling" ("Comet") chat demo
		websocket.go # Handlers for the "Websocket" chat demo

	views
		... # HTML and Javascript

The Chat Room

First, let’s look at how the chat room is implemented, in
app/chatroom/chatroom.go [https://github.com/revel/examples/blob/master/chat/app/chatroom/chatroom.go].

The chat room runs as an independent go-routine, started on initialization:

func init() {
	go chatroom()
}

The chatroom() function simply selects on three channels and executes the
requested action.

var (
	// Send a channel here to get room events back. It will send the entire
	// archive initially, and then new messages as they come in.
	subscribe = make(chan (chan<- Subscription), 10)
	// Send a channel here to unsubscribe.
	unsubscribe = make(chan (<-chan Event), 10)
	// Send events here to publish them.
	publish = make(chan Event, 10)
)

func chatroom() {
	archive := list.New()
	subscribers := list.New()

	for {
		select {
		case ch := <-subscribe:
			// Add subscriber to list and send back subscriber channel + chat log.
		case event := <-publish:
			// Send event to all subscribers and add to chat log.
		case unsub := <-unsubscribe:
			// Remove subscriber from subscriber list.
		}
	}
}

Let’s see how each of those is implemented.

Subscribe

case ch := <-subscribe:
 var events []Event
 for e := archive.Front(); e != nil; e = e.Next() {
 events = append(events, e.Value.(Event))
 }
 subscriber := make(chan Event, 10)
 subscribers.PushBack(subscriber)
 ch <- Subscription{events, subscriber}

A Subscription is created with two properties:

	The chat log (archive)

	A channel that the subscriber can listen on to get new messages.

The Subscription is then sent back over the channel that the subscriber
supplied.

Publish

case event := <-publish:
 for ch := subscribers.Front(); ch != nil; ch = ch.Next() {
 ch.Value.(chan Event) <- event
 }
 if archive.Len() >= archiveSize {
 archive.Remove(archive.Front())
 }
 archive.PushBack(event)

The published event is sent to the subscribers’ channels one by one. Then the
event is added to the archive, which is trimmed if necessary.

Unsubscribe

case unsub := <-unsubscribe:
 for ch := subscribers.Front(); ch != nil; ch = ch.Next() {
 if ch.Value.(chan Event) == unsub {
 subscribers.Remove(ch)
 }
 }

The subscriber channel is removed from the list.

Handlers

Now that you know how the chat room works, we can look at how the handlers
expose that functionality using different techniques.

Active Refresh

The Active Refresh chat room javascript refreshes the page every five seconds to
get any new messages (see Refresh/Room.html [https://github.com/revel/examples/blob/master/chat/app/views/Refresh/Room.html]):

// Scroll the messages panel to the end
var scrollDown = function() {
 $('#thread').scrollTo('max');
}

// Reload the whole messages panel
var refresh = function() {
 $('#thread').load('/refresh/room?user={%raw%}{{.user}}{%endraw%} #thread .message', function() {
 scrollDown();
 })
}

// Call refresh every 5 seconds
setInterval(refresh, 5000);

This is the handler to serve the above in app/controllers/refresh.go [https://github.com/revel/examples/blob/master/chat/app/controllers/refresh.go]:

func (c Refresh) Room(user string) revel.Result {
	subscription := chatroom.Subscribe()
	defer subscription.Cancel()
	events := subscription.Archive
	for i, _ := range events {
		if events[i].User == user {
			events[i].User = "you"
		}
	}
	return c.Render(user, events)
}

It subscribes to the chatroom and passes the archive to the template to be
rendered (after changing the user name to “you” as necessary).

Long Polling (Comet)

The Long Polling chat room (see LongPolling/Room.html [https://github.com/revel/examples/blob/master/chat/app/views/LongPolling/Room.html])
makes an ajax request that the server keeps open until a new message comes in. The javascript uses a
lastReceived timestamp to tell the server the last message it knows about.

var lastReceived = 0;
var waitMessages = '/longpolling/room/messages?lastReceived=';
var say = '/longpolling/room/messages?user={%raw%}{{.user}}{%endraw%}';

$('#send').click(function(e) {
 var message = $('#message').val();
 $('#message').val('');
 $.post(say, {message: message});
});

// Retrieve new messages
var getMessages = function() {
 $.ajax({
 url: waitMessages + lastReceived,
 success: function(events) {
 $(events).each(function() {
 display(this);
 lastReceived = this.Timestamp;
 });
 getMessages();
 },
 dataType: 'json'
 });
}
getMessages();

The handler for the above in app/controllers/longpolling.go [https://github.com/revel/examples/blob/master/chat/app/controllers/longpolling.go]

func (c LongPolling) WaitMessages(lastReceived int) revel.Result {
	subscription := chatroom.Subscribe()
	defer subscription.Cancel()

	// See if anything is new in the archive.
	var events []chatroom.Event
	for _, event := range subscription.Archive {
		if event.Timestamp > lastReceived {
			events = append(events, event)
		}
	}

	// If we found one, grand.
	if len(events) > 0 {
		return c.RenderJSON(events)
	}

	// Else, wait for something new.
	event := <-subscription.New
	return c.RenderJSON([]chatroom.Event{event})
}

In this implementation, it can simply block on the subscription channel,
assuming it has already sent back everything in the archive.

Websocket

The Websocket chat room (see WebSocket/Room.html [https://github.com/revel/examples/blob/master/chat/app/views/WebSocket/Room.html#L51])
opens a websocket connection as soon as the
user has loaded the page.

// Create a socket
var socket = new WebSocket('ws://127.0.0.1:9000/websocket/room/socket?user={%raw%}{{.user}}{%endraw%}');

// Message received on the socket
socket.onmessage = function(event) {
 display(JSON.parse(event.data));
}

$('#send').click(function(e) {
 var message = $('#message').val();
 $('#message').val('');
 socket.send(message);
});

The first thing to do is to subscribe to new events, join the room, and send
down the archive. Here is what websocket.go [https://github.com/revel/examples/blob/master/chat/app/controllers/websocket.go#L17] looks like:

func (c WebSocket) RoomSocket(user string, ws revel.ServerWebSocket) revel.Result {
	// Join the room.
	subscription := chatroom.Subscribe()
	defer subscription.Cancel()

	chatroom.Join(user)
	defer chatroom.Leave(user)

	// Send down the archive.
	for _, event := range subscription.Archive {
		if ws.MessageSendJSON(&event) != nil {
			// They disconnected
			return nil
		}
	}

Next, we have to listen for new events from the subscription. However, the
websocket library only provides a blocking call to get a new frame. To select
between them, we have to wrap it (websocket.go [https://github.com/revel/examples/blob/master/chat/app/controllers/websocket.go#L33]):

// In order to select between websocket messages and subscription events, we
// need to stuff websocket events into a channel.
newMessages := make(chan string)
go func() {
 var msg string
 for {
 err := ws.MessageReceiveJSON(&msg)
 if err != nil {
 close(newMessages)
 return
 }
 newMessages <- msg
 }
}()

Now we can select for new websocket messages on the newMessages channel.

The last bit does exactly that – it waits for a new message from the websocket
(if the user has said something) or from the subscription (someone else in the
chat room has said something) and propagates the message to the other.

// Now listen for new events from either the websocket or the chatroom.
for {
 select {
 case event := <-subscription.New:
 if ws.MessageSendJSON(&event) != nil {
 // They disconnected.
 return nil
 }
 case msg, ok := <-newMessages:
 // If the channel is closed, they disconnected.
 if !ok {
 return nil
 }

 // Otherwise, say something.
 chatroom.Say(user, msg)
 }
}
return nil

websocket.go [https://github.com/revel/examples/blob/master/chat/app/controllers/websocket.go#L48]

If we detect the websocket channel has closed, then we just return nil.

title: Facebook OAuth2
layout: examples

The facebook-oauth2 app demonstrates:

	Using the goauth2 library to fetch json information on the logged-in
Facebook user.

 Browse Source

Here are the contents of the app:

facebook-oauth2/app/
	models
		user.go # User struct and in-memory data store
	controllers
		app.go # All code

OAuth2 Overview

The entire OAuth process is governed by this configuration:

{% highlight go %}
var FACEBOOK = &oauth.Config{
ClientId: “95341411595”,
ClientSecret: “8eff1b488da7fe3426f9ecaf8de1ba54”,
AuthURL: “https://graph.facebook.com/oauth/authorize”,
TokenURL: “https://graph.facebook.com/oauth/access_token”,
RedirectURL: “http://loisant.org:9000/Application/Auth”,
}
{% endhighlight %}

Here’s an overview of the process:

	The app sends the user to AuthURL.

	While there, the user agrees to the authorization.

	Facebook sends the user back to RedirectURL, adding a parameter code.

	The app retrieves an OAuth access token from TokenURL using the code.

	The app subsequently uses the access token to authenticate web service requests.

Code walk

Let’s take a look at the first bit of code:

{% highlight go %}
func (c Application) Index() revel.Result {
u := c.connected()
me := map[string]interface{}{}
if u != nil && u.AccessToken != “” {
// Use the access token to request user info
…
}

authUrl := FACEBOOK.AuthCodeURL("foo")
return c.Render(me, authUrl)

}
{% endhighlight %}

It doesn’t do much since we don’t have an access token yet. All it does is
generate an Authorization URL. (”foo” is the “state”, which is a parameter that
facebook propagates back to us as a parameter to the RedirectURL. We do not
need to use it here.)

Here’s the interesting bit of the template:

{% raw %}
{{if .me}}
You’re {{.me.name}} on Facebook

{{else}}
login
{{end}}
{% endraw %}

If we had information on the user, we would tell them their name. Since we
don’t, we just ask the user to log in to Facebook.

Assuming the user does so, the next time we see them is when Facebook sends them
to Auth:

{% highlight go %}
func (c Application) Auth(code string) revel.Result {
t := &oauth.Transport{Config: FACEBOOK}
tok, err := t.Exchange(code)
if err != nil {
revel.ERROR.Println(err)
return c.Redirect(Application.Index)
}

user := c.connected()
user.AccessToken = tok.AccessToken
return c.Redirect(Application.Index)

}
{% endhighlight %}

The t.Exchange(code) bit makes a request to the TokenURL to get the access
token. If successful, we store it on the user. Either way, the user ends up
back at Index:

{% highlight go %}
func (c Application) Index() revel.Result {
u := c.connected()
me := map[string]interface{}{}
if u != nil && u.AccessToken != “” {
resp, _ := http.Get(”https://graph.facebook.com/me?access_token=” +
url.QueryEscape(u.AccessToken))
defer resp.Body.Close()
if err := json.NewDecoder(resp.Body).Decode(&me); err != nil {
revel.ERROR.Println(err)
}
…….
{% endhighlight %}

Now we have an AccessToken, so we make a request to get the associated user’s
information. The information gets returned in JSON, so we decode it into a
simple map and pass it into the template.

title: Filters
layout: examples
godoc:
- Filters

User contributed examples:

Asset pipeline

Use the Train [https://github.com/shaoshing/train] asset pipline in revel

init.go

func init() {
 revel.Filters = []revel.Filter{
 AssetsFilter,
 revel.PanicFilter, // Recover from panics and display an error page instead.
 revel.RouterFilter, // Use the routing table to select the right Action (Controller.Method)
 revel.FilterConfiguringFilter, // A hook for adding or removing per-Action filters.
 revel.ParamsFilter, // Parse parameters into Controller.Params.
 revel.SessionFilter, // Restore and write the session cookie.
 revel.FlashFilter, // Restore and write the flash cookie.
 revel.ValidationFilter, // Restore kept validation errors and save new ones from cookie.
 revel.I18nFilter, // Resolve the requested language
 revel.InterceptorFilter, // Run interceptors around the Action.
 revel.CompressFilter, // Compress the result.
 revel.ActionInvoker, // Invoke the Action (Controller.Method).
 }

 train.ConfigureHttpHandler(nil)
 http.ListenAndServe(":3000", nil)
 revel.TemplateFuncs["javascript_tag"] = train.JavascriptTag
 revel.TemplateFuncs["stylesheet_tag"] = train.StylesheetTag
}

// Server /assets with [train]
var AssetsFilter = func(c *revel.Controller, fc []revel.Filter) {
 path := c.Request.URL.Path
 if strings.HasPrefix(path, "/assets") {
 train.ServeRequest(c.Response.Out, c.Request.Request)
 } else {
 fc[0](c, fc[1:])
 }
}

title: Example Applications
layout: examples

Revel provides a few example applications to demonstrate typical usage.

git clone https://github.com/revel/examples.git
revel run examples/booking

 Examples Repository

Booking

	A database-driven hotel-booking application, including user management.

View

Chat

	A chat room demonstrating active refresh, long-polling (comet), and websocket implementations.

View

Validation

	A demonstration of the validation system.

View

Upload

	Demonstrates single and multiple file uploads.

View

Twitter OAuth

	A sample app that displays mentions and allows posting to a Twitter account using OAuth.

View

Facebook OAuth2

	A sample app that displays Facebook user information using OAuth2.

View

title: Messages
layout: examples

The i18n application demonstrates the various internationalization features of Revel:

	Retrieving the current locale from a controller and template.

	Resolving messages using the current locale from a controller and template.

	Message file features such as referencing and message arguments.

 Browse Source

Note: at the time of writing this sample application only demonstrates the messages feature.

Contents

i18n/
	app/		# Controllers & views
	conf/		# Configuration file(s)
	messages/
		sample.en 	# English language sample messages
		sample2.en 	# English language sample messages #2
	public/
	tests/

title: Twitter OAuth
layout: examples

The twitter-oauth app uses the mrjones/oauth library to demonstrate:

	How to do the oauth dance to authenticate your app to use a Twitter account.

	Fetching mentions for that Twitter account.

	Tweeting on behalf of that Twitter account.

 Browse Source

Here are the contents of the app:

twitter-oauth/app/
	models
		user.go # User struct and in-memory data store
	controllers
		app.go # All code

OAuth Overview

The OAuth process is governed by this configuration:

var TWITTER = oauth.NewConsumer(
	"VgRjky4dTA1U2Ck16MmZw",
	"l8lOLyIF3peCFEvrEoTc8h4oFwieAFgPM6eeTRo30I",
	oauth.ServiceProvider{
		AuthorizeTokenUrl: "https://api.twitter.com/oauth/authorize",
		RequestTokenUrl: "https://api.twitter.com/oauth/request_token",
		AccessTokenUrl: "https://api.twitter.com/oauth/access_token",
	},
)

Here’s an overview of the process:

	The app generates a “request token” and sends the user to Twitter.

	The user authorizes the app.

	Twitter redirects the user to the provided redirect url, including an
“verifier” in the parameters.

	The app constructs a request to Twitter using the “request token” and
the “verifier”, to which Twitter returns the “access token”.

	The app henceforth uses the access token to operate Twitter on the user’s behalf.

title: Upload
layout: examples

The upload app demonstrates file uploads

 Browse Source

title: Validation
layout: examples
godoc:
- Validation
- Validator

The validation app demonstrates every way that the Validation system may be used
to good effect.

 Browse Source

Here are the contents of the app:

validation/app/
	models
		user.go # User struct and validation routine.
	controllers
		app.go # Introduction
		sample1.go # Validating simple fields with error messages shown at top of page.
		sample2.go # Validating simple fields with error messages shown inline.
		sample3.go # Validating a struct with error messages shown inline.

title: App Config Keys
layout: manual
github:
labels:
- topic-config
godoc:
- Config

This is a comprehensive list of keys and their possible values for the Revel
app.conf file. See general information for an overview on how to use the app.conf file.

Revel Tool

Option	Default	Description
—————	—-	—————
error.link		Link to use for errors when building
harness.port	0	The default port used by the harness
watch.mode	normal	Valid values normal, eager if eager application is rebuilt immediately when a source file is changed (instead of waiting for a new request)
watch.gopath	false	Watch GOPAth for changes
watch	true	Watch files for changes
watch.code	true	Watch source code for changes
package.folders	conf,public,app/views	when building/packaging only include folders defined in this option

Core application

Option	Default	Description																				
—————	—-	—————																				
app.behind.proxy		True if behind a proxy		`app.name`		The name of the application																
app.root		The application root		`app.secret`		The secret hashing key																
build.tags		Any build tags for the cmd tool																				
cache.hosts		The name of the (redis) host to provide caching		`cache.memcached`	`false`	True if cache should be in memory		`cache.redis`	`false`	True if cache should be in redis		`cache.redis.maxidle`	`10`	The max idle time		`cache.redis.maxactive`	`0`	The max active time		`cache.redis.password`		The password of the redis cache server
cache.redis.protocol	tcp	The protocol of the redis cache server																				
cache.redis.timeout.connect	10000	The max time to connect in ms																				
cache.redis.timeout.read	5000	The max time to read in ms																				
cache.redis.timeout.write	5000	The max time to write in ms																				
cookie.domain		The domain of the cookie		`cookie.prefix`		The name of the cookie prefix																
cookie.secure	http.ssl	True if secure cookie																				
cookie.samesite		Valid values `default`, `strict`, `lax`, `none`		`format.date`	`"2006-01-02"`	The default format of date		`format.datetime`	`"2006-01-02 15:04"`	The default format of date time		`http.host`	`localhost`	The hostname		`http.addr`		The http address				
http.port	9000	The http port to listen on																				
http.timeout.read	0	The time in seconds to wait for a read to finish																				
http.timeout.write	0	The time in seconds to wait for a write to finish																				
httpmaxrequestsize	32M	As implemented by the server engine		http.sslcert		The SSL Certificate path		`http.sslkey`		The SSL Key path												
http.ssl	``	True if HTTPS should be used																				
log.fatal.output	stderr	The output of fatal messages																				
log.error.output	stderr	The output of error messages																				
log.debug.output	stderr	The output of debug messages																				
log.info.output	stderr	The output of info messages																				
log.warn.output	stderr	The output of warn messages																				
log.colorize	true	True if log output should be colorized																				
mode.dev	false	True if in dev mode																				
revel.cache.controller.stack	10	The number of user controller instances to precreate (each user instance gets a Controller instance injected into it during routing)																				
revel.cache.controller.maxstack	100	The number of instances to store and reuse																				
revel.controller.stack	100	The number of controller instances to precreate of Controllers																				
revel.controller.maxstack	200	The number of instances to store and reuse																				
results.compressed	false	Set to True if you want the compress filter to compress the results																				
results.chunked	false	Set to True if you want the results chunked on return																				
results.trim.html	false	Set to True if you want the results trimmed (whitespace removed)																				
results.pretty	false	Set to True if you want the JSON results or XML results prettified																				
server.context.stack	100	The number of instances to precreate of server response & request handlers																				
server.context.maxstack	200	The number of instances to store and reuse																				
server.form.stack	100	The number of instances to precreate of server multipart form objects																				
server.form.maxstack	200	The number of instances to store and reuse																				
server.engine	go	The Server Engine to use																				
server.request.max.multipart.filesize	32M	The max file size that will be accepted via upload file																				
template.engines	go	The comma delimited list of template engines to use, the first engine in the list will be the default engine																				
watch.routes	true	Watch routes file for code changes																				
watch.templates	true	Watch template files for code changes																				

Modules

NewRelic Server Engine

Option	Default	Description
—————	—-	—————
app.name	My App	Reporting name to newrelic
server.newrelic.license		Newrelic license
server.newrelic.addfilter	true	Inject the newrelic filter into revel.Filters automatically (or you can include it yourself by adding NewRelicFilter to your filter chain

FastHTTP Server Engine

Option	Default	Description
—————	—-	—————
server.newrelic.license		Newrelic license

Ace Template Engine

Option	Default	Description
—————	—-	—————
ace.template.path	lower	Change the template case to lower, valid values lower,case invalid values assume lower

Pongo2 Template Engine

Option	Default	Description
—————	—-	—————
pongo2.template.path	lower	Change the template case to lower, valid values lower,case invalid values assume lower

Go Template Engine

Option	Default	Description
—————	—-	—————
go.template.path	lower	Change the template case to lower, valid values lower,case invalid values assume lower
template.go.delimiters	``	The template delimiter to use for all go templates

Jobs Engine

Option	Default	Description
—————	—-	—————
jobs.pool	10	Number of jobs that can run at once
jobs.acceptproxyaddress	false	If true allow external proxy access for jobs page
jobs.selfconcurrent	false	Can a single job run multiple (concurrent) times

title: app.conf
layout: manual
github:
labels:
- topic-config
godoc:
- Config

The application config file is at conf/app.conf relative to your app root. It
uses the syntax accepted by revel/config [https://github.com/revel/config]
which is similar to INI [http://en.wikipedia.org/wiki/INI_file] files. We’ll
cover the general structure here. See comprehensive keys for
a list of all built-in config keys and their values.

Example

Two sections, dev (develop) and prod (production):

app.name = myapp
app.secret = pJLzyoiDe17L36mytqC912j81PfTiolHm1veQK6Grn1En3YFdB5lvEHVTwFEaWvj
http.addr =
http.port = 9000

my_stuff.foo = 1234
my_stuff.bar = Sheebang!

Development settings
[dev]
results.pretty = true
watch = true
http.addr = 192.168.1.2

log.trace.output = off
log.info.output = stderr
log.warn.output = stderr
log.error.output = stderr

Production settings
[prod]
results.pretty = false
watch = false
http.port = 9999

log.trace.output = off
log.info.output = off
log.warn.output = %(app.name)s.log
log.error.output = %(app.name)s.log

Config values can be accesed via the revel.Config [https://godoc.org/github.com/revel/revel#Config] variable, more below

driver := revel.Config.StringDefault("db.driver", "mysql")
ena := revel.Config.BoolDefault("myapp.remote.enabled", false)

Run Modes

Each section is a Run Mode and selected with the revel run command, eg.

revel run bitbucket.org/mycorp/my-app dev

	The keys at the top level (eg app, http) are not within any [section] and apply to all run modes (ie default).

	This allows values to be overridden (or introduced) as required in each run mode [section].

	Also not in the example above, keys under the [prod] section applies only to prod mode.

	The run mode is chosen at runtime by the argument provided to the revel run. eg:

	revel run my-app - will start in dev mode as the default

	revel run my-app prod - will start with prod mode.

Revel creates new apps with dev and prod run modes defined, but the developer may
create any sections they wish.

Environment variables

Besides static configuration, Revel also supports dynamic configuration by injecting
environment variables or the value of other parameters.

In most cases, you’ll want to load sensitive values from environment variables
rather than storing them in your configuration file. The syntax for including an
environment variable is similar to the shell syntax: ${ENV_VAR_NAME}.

Example

app.name = chat
http.port = 9000

db.driver = ${CHAT_DB_DRIVER}
db.spec = ${CHAT_DB_SPEC}

Revel will then load the CHAT_DB_DRIVER and CHAT_DB_SPEC environment variables
and inject them into the config at runtime.

Composing other parameters

To incorporate the value of one parameter into another, you can “unfold” it by using
the %(var_name)s syntax (note the ‘s’ at the end).

Example

app.name = chat
http.port = 9000

log.warn.output = %(app.name)s.log
log.error.output = %(app.name)s.log

Will be parsed by revel/config as:

app.name=chat
http.port=9000

log.warn.output = chat.log
log.error.output = chat.log

[bookmark: customproperties]

Custom properties

The developer may define custom keys and access them via the
revel.Config variable, which exposes a
simple api [https://godoc.org/github.com/revel/revel#MergedConfig].

Example

In your app.conf:

myapp.remote = 120.2.3.5
myapp.remote.enabled = true

In your Go code:

var remoteServer string
if revel.Config.BoolDefault("myapp.remote.enabled", false) {
 remoteServer = revel.Config.StringDefault("myapp.remote", "0.0.0.0")
 DoSomethingTo(remoteServer)
}

External app.conf

Since v0.13, Revel has supported loading a external app.conf from a given
directory. It’s a convenient way to override or add config values to the
application. Please make sure app.conf is in the given path.

Example

age:
func init() {
 revel.ConfPaths = []string{"/etc/myapp/conf"}
}

[bookmark: BuiltinProperties]

Built-in properties

	Application

	HTTP

	Results

	Internationalization

	Watch

	Cookies

	Session

	Templates

	Formatting

	Database

	Build

	Logging

	Cache

	Jobs

	Modules

	Error Handling

[bookmark: application]

Application settings

app.name

The human-readable application name. This is used for some console output and
development web pages.

Example

 app.name = Booking example application

Default: Auto Generated For example: github.com/myaccount/myrevelapp, app.name = myrevelapp

app.secret

The secret key used for cryptographic operations, see revel.Sign [https://godoc.org/github.com/revel/revel#Sign].

	Revel also uses it internally to sign session cookies.

	Setting it to empty string disables signing and is not recommended.

	It is set to a random string when initializing a new project with revel new

Example

 app.secret = pJLzyoiDe17L36mytqC912j81PfTiolHm1veQK6Grn1En3YFdB5lvEHVTwFEaWvj

Default: Auto Generated random seed value

app.behind.proxy

If true Revel will resolve client IP address from HTTP headers X-Forwarded-For and X-Real-Ip in the order. By default Revel will get client IP address from http.Request’s RemoteAddr. Set to true if Revel application is running behind the proxy server like nginx, haproxy, etc.

Example

 app.behind.proxy = true

Default: false

[bookmark: HTTP]

HTTP settings

http.port

The port to listen on.

Example:

 http.port = 9000

http.addr

The IP address on which to listen.

	On Linux, an address of 0.0.0.0 will listen on all interfaces assigned to the host

	on Windows, an empty string is silently converted to "localhost"

	An empty string is converted to localhost for security reasons.

Default: “localhost”

harness.port

Specifies the port for the application to listen on, when run by the harness.
For example, when the harness is running, it will listen on http.port, run the
application on harness.port, and reverse-proxy requests. Without the harness,
the application listens on http.port directly.

By default, a random free port will be chosen. This is only necessary to set
when running in an environment that restricts socket access by the program.

Default: 0

http.ssl

If true, Revel’s web server will configure itself to accept SSL connections. This
requires an X509 certificate and a key file.

Default: false

http.sslcert

Specifies the path to an X509 certificate file.

Default: “”

http.sslkey

Specifies the path to an X509 certificate key.

Default: “”

http.timeout.read

Read timeout specifies a time limit for http.Server.ReadTimeout in seconds
made by a single client. A Timeout of zero means no timeout.

Example

 http.timeout.read = 300

Default: 90

http.timeout.write

Write timeout specifies a time limit for http.Server.WriteTimeout in seconds
made by a single client. A Timeout of zero means no timeout.

Example

 http.timeout.write = 120

Default: 60

[bookmark: results]

Results

results.chunked

Determines whether the template rendering should use
chunked encoding. Chunked
encoding can decrease the time to first byte on the client side by sending data
before the entire template has been fully rendered.

Default: false

results.pretty

Configures RenderXML [https://godoc.org/github.com/revel/revel#Controller.RenderXML]
and RenderJSON [https://godoc.org/github.com/revel/revel#Controller.RenderJSON]
to produce indented XML/JSON.

Example

 results.pretty = true

Default: false

Internationalization

i18n.default_language

Specifies the default language for messages when the requested locale is not
recognized. If left unspecified, a dummy message is returned to those requests.

Example

 i18n.default_language = en

Default: “”

i18n.cookie

Specifies the name of the cookie used to store the user’s locale.

Default: %(cookie.prefix)_LANG (see cookie.prefix)

Watch

Revel watches your project and supports hot-reload for a number of types of
source. To enable watching:

 watch = true

If false, nothing will be watched, regardless of the other watch.*
configuration keys. (This is appropriate for production deployments)

Default: true

watch.mode

	If watch.mode = "eager", the server starts to recompile the application every time the application’s files change.

	If watch.mode = "normal", the server recompiles with a request eg a browser refresh.

Default: "normal"

watch.templates

If true, Revel will watch the views/ template directory (and sub-directories) for changes and reload them as necessary.

Default: true

watch.routes

If true, Revel will watch the app/routes file for changes and reload as necessary.

Default: false

watch.code

If true, Revel will watch the Go code for changes and rebuild your application
as necessary. This runs the harness as a reverse-proxy to the application.

All code within the application’s app/ directory, or any sub-directory is watched.

Default: true

Cookies

Revel components use the following cookies by default:

	REVEL_SESSION

	REVEL_LANG

	REVEL_FLASH

	REVEL_ERRORS

cookie.prefix

Revel uses this property as the prefix for the Revel-produced cookies. This is
so that multiple REVEL applications can coexist on the same host.

Example

 cookie.prefix = MY

would result in the following cookie names:

	MY_SESSION

	MY_LANG

	MY_FLASH

	MY_ERRORS

Default: REVEL

cookie.secure

A secure cookie has the secure attribute enabled and is only used via HTTPS,
ensuring that the cookie is always encrypted when transmitting from client to
server. This makes the cookie less likely to be exposed to cookie theft via
eavesdropping.

 cookie.secure = false

Default: false in dev mode, otherwise true

cookie.samesite

The SameSite attribute of the Set-Cookie HTTP response header allows you to declare if your cookie should be restricted to a first-party or same-site context. As of mid-2020, browsers are warning that cookies that do not have SameSite set will soon be blocked unless they also have Secure set. So once browsers start enforcing this, for local development where you are not using SSL and thus cannot use Secure, you will likely need to set cookie.samesite to strict. And where possible, it is best practice to set to strict in production too.

 cookie.samesite = default
 cookie.samesite = lax
 cookie.samesite = strict
 cookie.samesite = none

Default: default

Session

session.expires

Revel uses this property to set the expiration of the session cookie.
Revel uses ParseDuration [http://golang.org/pkg/time/#ParseDuration] to parse the string.
The default value is 30 days. It can also be set to "session" to allow session only
expiry. Please note that the client behaviour is dependent on browser configuration so
the result is not always guaranteed.

Templates

template.go.delimiters

Specifies an override for the left and right delimiters used in the templates.The delimiters must be specified as “LEFT_DELIMS RIGHT_DELIMS”

Default: {{ }}

Formatting

format.date

Specifies the default date format for the application. Revel uses this in two places:

	Binding dates to a time.Time (see parameters)

	Printing dates using the date template function (see template funcs)

Default: 2006-01-02

format.datetime

Specifies the default datetime format for the application. Revel uses this in two places:

	Binding dates to a time.Time (see parameters)

	Printing dates using the datetime template function (see template funcs)

Default: 2006-01-02 15:04

Database

db.import

Specifies the import path of the desired database/sql driver for the db module.

Default: “”

db.driver

Specifies the name of the database/sql driver (used in
sql.Open [http://golang.org/pkg/database/sql/#Open]).

Default: “”

db.spec

Specifies the data source name of your database/sql database (used in
sql.Open [http://golang.org/pkg/database/sql/#Open]).

Default: “”

Build

build.tags

Build tags [http://golang.org/cmd/go/#Compile_packages_and_dependencies] to use
when building an application.

Default: “”

Logging

See logging for details.

Cache

The cache module is a simple interface to a heap or distributed cache.

cache.expires

Sets the default duration before cache entries are expired from the cache. It
is used when the caller passes the constant cache.DEFAULT.

It is specified as a duration string acceptable to
time.ParseDuration [http://golang.org/pkg/time/#ParseDuration]

(Presently it is not possible to specify a default of FOREVER)

Default: 1h (1 hour)

cache.memcached

If true, the cache module uses memcached [http://memcached.org] instead of the
in-memory cache.

Default: false

cache.redis

If true, the cache module uses redis [http://redis.io] instead of the
in-memory cache.

Default: false

cache.hosts

A comma-separated list of memcached hosts. Cache entries are automatically
sharded among available hosts using a deterministic mapping of cache key to host
name. Hosts may be listed multiple times to increase their share of cache
space.

Default: “”

[bookmark: jobs]

Scheduled Jobs

The jobs module allows you to run scheduled or ad-hoc jobs.

jobs.pool

	The number of jobs allowed to run concurrently.

	Default is 10.

	If zero (0), then there is no limit imposed.

 jobs.pool = 4

jobs.selfconcurrent

If true (default is false), allows a job to run even if previous instances of that job are still in
progress.

 jobs.selfconcurrent = true

jobs.acceptproxyaddress

If true (default is false), the status page will accept the X-Forwarded-For header as the remote
address used to allow or deny public access. This is diabled by default as the header value can be spoofed
and therefore is not trustable. You should only use this if you are access your Revel app via a reverse
proxy (e.g. Nginx). It is not recommended to allow this is production mode due to the security implications.

 jobs.acceptproxyaddress = true

Named Schedules

Named cron schedules may be configured by setting a key of the form:

 cron.schedulename = @hourly

The names schedule may be referenced upon submission to the job runner. For
example:

 jobs.Schedule("cron.schedulename", job)

Modules

	Modules may be added to an application by specifying their base import path.

	An empty import path disables the module.

 module.testrunner = github.com/revel/modules/testrunner

 ## FIXME mymodule crashes so disabled for now
 # module.mymodulename = /path/to/mymodule
 module.mymodulename =

Error Handling

	An optional value to wrap error path and line locations with a hyper link.

	Disabled by default; does not wrap error location with link.

	An example using Sublime Text’s custom URI scheme:

 error.link = "subl://open?url=file://{% raw %}{{Path}}{% endraw %}&line={% raw %}{{Line}}{% endraw %}"

Areas for development

	Allow inserting command line arguments as config values or otherwise
specifying config values from the command line.

title: Cache
layout: manual
github:
labels:
- topic-cache
godoc:
- Cache

Revel provides a Cache [https://godoc.org/github.com/revel/revel/cache#Cache] library for server-side, temporary, low-latency
storage. It is a good replacement for frequent database access to slowly
changing data. It could also be used for implementing user sessions, if for example the cookie-based sessions are insufficient.

Implementations

The Cache may be configured to be backed by one of the following implementations:

	a list of memcached [http://memcached.org/] hosts

	a single redis [http://redis.io] host

	the ‘in-memory’ implementation. Note the in memory stores the object in memory
and returns the same object when you Get it (if available). This means that
updating an object retrieved from the cache will update the stored cache object
as well.

Expiration

Cache items are set with an expiration time, in one of three forms:

	a time.Duration [http://golang.org/pkg/time/#Duration]

	cache.DefaultExpiryTime - the application-wide default expiration time, one hour by default (see cache config)

	cache.ForEverNeverExpiry - will cause the item to never expire

Important: Callers can not rely on items being present in the cache, as
 the data is not durable, and a cache restart may clear all data.

Serialization

The Cache [https://godoc.org/github.com/revel/revel/cache#Cache] getters and setters automatically serialize values for callers, to
and from any type, with the exception of the inmemory model which stores and returns the object verbatim.
It uses the following mechanisms:

	If the value is already of type []byte, the data is not touched

	If the value is of any integer type, it is stored as the ASCII representation

	Otherwise, the value is encoded using encoding/gob [http://golang.org/pkg/encoding/gob/]

Configuration

Configure the cache using these keys in conf/app.conf:

	cache.expires

	a string accepted by time.ParseDuration [http://golang.org/pkg/time/#ParseDuration] to specify
the default expiration duration. (default 1 hour)

	cache.memcached

	a boolean indicating whether or not memcached should be
used. (default false)

	cache.redis

	a boolean indicating whether or not redis should be
used. (default false)

	cache.hosts

	a comma separated list of hosts to use as backends. If the backend is Redis,
then only the first host in this list will be used.

Cache Example

Here’s an example of the common operations. Note that callers may invoke cache
operations in a new goroutine if they do not require the result of the
invocation to process the request.

{% highlight go %}
import (
“github.com/revel/revel”
“github.com/revel/revel/cache”
)

func (c App) ShowProduct(id string) revel.Result {
var product Product
if err := cache.Get(”product_”+id, &product); err != nil {
product = loadProduct(id)
go cache.Set(”product_”+id, product, 30time.Minute)
}
return c.Render(product)
}

func (c App) AddProduct(name string, price int) revel.Result {
product := NewProduct(name, price)
product.Save()
return c.Redirect(”/products/%d”, product.id)
}

func (c App) EditProduct(id, name string, price int) revel.Result {
product := loadProduct(id)
product.name = name
product.price = price
go cache.Set(”product_”+id, product, 30*time.Minute)
return c.Redirect(”/products/%d”, id)
}

func (c App) DeleteProduct(id string) revel.Result {
product := loadProduct(id)
product.Delete()
go cache.Delete(”product_”+id)
return c.Redirect(”/products”)
}
{% endhighlight %}

Session usage

The Cache [https://godoc.org/github.com/revel/revel/cache#Cache] has a global key space. To use it as a session store, callers should
take advantage of the session’s UUID, as shown below:

{% highlight go %}
cache.Set(c.Session.Id(), products)

// and then in subsequent requests
err := cache.Get(c.Session.Id(), &products)
{% endhighlight %}

title: Concepts
layout: manual

Revel is almost a full stack web framework in the spirit of
Rails [http://rubyonrails.org/] and Play! [http://www.playframework.org] frameworks.

	Many proven ideas are incorporated into the framework, its design and interface

	Also using golang [https://golang.org/], it’s also hackable ;-)

Revel attempts to make it easy to build web applications using the Model-View-Controller
(MVC) [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller]
pattern by relying on conventions that require a certain structure in an
application. In return, it is very light on configuration
and enables an extremely fast development cycle.

Revel is very customizable, you can plug in your own template system
http server engine or session engine.
Revel also allows integration of custom HTTP Mux, so if you have an existing
code base you can migrate to Revel at your own pace, or integrate generated code easily.
It is the perfect middleware that
is designed to work out of the box and provide the ability to implement almost any application.

MVC

Here is a quick summary:

	Models are the essential data objects that describe your application domain.
Models also contain domain-specific logic for querying and updating the data.

	Views describe how data is presented and manipulated. In our case, this is
the template that is used to present data and controls to the user.

	Controllers handle the request execution. They perform the user’s desired
action, they decide which View to display, and they prepare and provide the
necessary data to the View for rendering.

A detailed overview of the MVC approach is beyond the scope of this guide.

Revel Startup

An event model has been added to revel to make it easier to provide additional control
to the application. Events can be added by calling
revel.AddInitEventHandler(func(event int, value interface{}) (r int) {})
The event ID’s are called in the following sequence
[image: Revel Startup Flow]

The Life of a Request

Below is an overview of the request processing framework:

[image: Life of a Request Flow]
	Revel contains a Server Engine interface. It allows a developer to build their own “engine”
to communicate to the MVC architecture of Revel. By default a single Go http.Server gets created to handle http.Requests.

	A revel.Controller (which is the context for the request) is populated and the request
is passed to the
Filter chain.

	Filters are links in a request processing chain. They will
implement horizontal concerns like request logging, cookie policies,
authorization, etc. Most of Revel’s built-in functionality are implemented as
Filters.

	Actions are the application-specific controller and method that process the input and
produce a Result. An Action is defined as the controller name and method name.
For example “App.Index” is an action

Server Engine

Revel allows the developer to build their own Server Engine. It comes with Go’s http.Server
out of the box which works great for building up your project. However in production you may need more control so
you can replace it (see modules/serverengine/fasthttp) or extend it (see modules/serverengine/newrelic).

Revel’s Server Engine can handle multiple go-routine
(lightweight thread) to process each incoming request. The implication is that
your code is free to block, but it must handle concurrent request processing.

When a request is received (through the EngineInit.Callback) it is composed into a revel.Controller which is passed to the Filter chain for
processing and, upon completion, apply the result to write the response.

By default, the GoEngine will be registered at the "/" url to receive all
incoming connections. However, applications are free to override this behavior
– for example, they may want to use existing http.Handlers rather than
re-implementing them within the Revel framework. See the FAQ for
more detail.

Filters

Filters implement most request processing functionality provided
by Revel. They have a simple interface that allows them to be nested.

The “Filter Chain” is an array of functions, each one invoking the next, until
the terminal filter stage invokes the action. For example, one of the first
Filters in the chain is the RouterFilter [https://godoc.org/github.com/revel/revel#RouterFilter],
which decides which Action the request is meant for and creates that controller.

Overall, Filters and the Filter Chain are the equivalent of Rack.

Namespace, Controllers and Methods

Each request invokes an action. An action is defined as the combination of a
Controller Name and a Controller Method. For example “App.Index” is an action. An
action may also include a namespace like static\App.Index (Namespaces
are used to prevent duplicate actions when using a module). This action
handles the request and writes the response.

Good program practice would group related methods into one controllers.The Controller [https://godoc.org/github.com/revel/revel#Controller] type contains relevant
fields and methods and acts as the context for each request.

As part of handling the request, Revel instantiates an instance of a
Controller [https://godoc.org/github.com/revel/revel#Controller], and it sets all of these properties on the embedded
Controller. Revel does not share Controller instances between requests (but it will reuse them).

A Controller is any type that embeds *revel.Controller [https://godoc.org/github.com/revel/revel#Controller] (directly or indirectly).
{% highlight go %}
type MyAppController struct {
*revel.Controller
}
{% endhighlight %}

A Action Method is any method on a Controller that meets the following criteria:

	is exported

	returns a revel.Result

For example:
{% highlight go %}
func (c MyAppController) ShowLogin(username string) revel.Result {
..
return c.Render(username)
}
{% endhighlight %}

The example invokes Controller.Render() to execute a template, passing it the
username as a parameter. There are many methods on a
Controller [https://godoc.org/github.com/revel/revel#Controller] that
produce Result [https://godoc.org/github.com/revel/revel#Result];
but applications are also free to create their own custom result.

Results

A Result is anything conforming to the interface:
{% highlight go %}
type Result interface {
Apply(req *Request, resp *Response)
}
{% endhighlight %}

Typically, nothing is written to the response until the action and all
filters have returned. At that point, Revel writes response headers and cookies
(e.g. setting the session cookie), and then invokes Result.Apply to write the
actual response content.

title: Controllers Overview
layout: manual
github:
labels:
- topic-controller
godoc:
- Controller
- Request
- Response

The revel.Controller [https://godoc.org/github.com/revel/revel#Controller] is the context for
a single request and controls

	the incoming Request [https://godoc.org/github.com/revel/revel#Request] stuff

	and the Response [https://godoc.org/github.com/revel/revel#Response] back, in Html, Json, Xml, File or your own custom.

	Controllers are reused but not for the same Request

	Controllers.Destroy function may be defined to clean up locally defined variables and are called
after the controller is used.

A Controller instance is not shared by two simultaneous requests, but a controller instance may be
reused. So if you have instance variables that are set in your controller
(like in a Before function), you should ensure that these variables are always initialized inside your
Before function.

For example say you have a Map defined in your controller, and the Before function looks at
the Controller.Params object and see that the name parameter exists, so it sets that value in the map.
then the controller finishes its execution.

Now a new request comes in and the controller is reused, and the Before function looks at
the Controller.Params object and does not see that the name parameter exists, so it does not change
the “name” in the map, but as you see the map contains the value from the previous request. This type
of hidden bugs can be difficult to track down and it is the reason why it is recommended not to use
additional attributes in the controller

There are a few ways to avoid this situation,

	Use the Controller.Args map to store your single use variables, this map is always initialized
to an empty map so it makes a perfect spot to transfer objects within the controller call

	If you do use controller defined variables make sure you initialize them in your Before function.
(see Before function below)

	Define a Destroy function to “clean up” your locally defined stuff. Make sure the
first thing the Destroy calls is to the controller Destroy call

Example of a Controller with a Destroy function

type MyAppController struct {
 *revel.Controller
 MyMappedData map[string]interface{}
}

// Assume that this is called for all the controller functions
func (c MyAppController) Before() {
 c.MyMappedData = map[string]interface{}{}
}

// This function will be called when the Controller is put back into the stack
func (c MyAppController) Destroy() {
	c.Controller.Destroy()
	// Clean up locally defined maps or items
	c.MyMappedData = nil
}

A Controller is any type that embeds a
*revel.Controller [https://godoc.org/github.com/revel/revel#Controller] as the first field/type
and is in a source path called controllers.

type MyAppController struct {
 *revel.Controller
}
type MyOtherController struct {
 *revel.Controller
 OtherStuff string
 MyNo int64
}
type FailController struct {
 XStuff string
 *revel.Controller // Fail as it should be first
}

NOTE: *revel.Controller must be 'embedded' as the first type in
a controller struct anonymously.
The revel.Controller [https://godoc.org/github.com/revel/revel#Controller] is the context for a request and contains the
Request [https://godoc.org/github.com/revel/revel#Request] and Response [https://godoc.org/github.com/revel/revel#Response] data.

Below are the most used components and type/struct definitions to give a taste of
Controller [https://godoc.org/github.com/revel/revel#Controller],
Request [https://godoc.org/github.com/revel/revel#Request],
Params [https://godoc.org/github.com/revel/revel#Params]
and Response [https://godoc.org/github.com/revel/revel#Response].

type Controller struct {
 Name string // The controller name, e.g. "Application"
 Type *ControllerType // A description of the controller type.
 MethodType *MethodType // A description of the invoked action type.
 AppController interface{} // The controller that was instantiated.

 Request *Request
 Response *Response
 Result Result

 Flash Flash // User cookie, cleared after 1 request.
 Session Session // Session, stored in cookie, signed.
 Params *Params // Parameters from URL and form (including multipart).
 Args map[string]interface{} // Per-request scratch space.
 ViewArgs map[string]interface{} // Args passed to the template.
 Validation *Validation // Data validation helpers
}

// The request
type Request struct {
	In ServerRequest
	ServerHeader *RevelHeader
	ContentType string
	Format string // "html", "xml", "json", or "txt"
	AcceptLanguages AcceptLanguages
	Locale string
	WebSocket ServerWebSocket
	Method string
	RemoteAddr string
	Host string
	// URL request path from the server (built)
	URL *url.URL
	// DEPRECATED use GetForm()
	Form url.Values
	// DEPRECATED use GetMultipartForm()
	MultipartForm *MultipartForm
}

// These provide a unified view of the request params.
// Includes:
// - URL query string
// - Form values
// - File uploads
type Params struct {
 url.Values
 Files map[string][]*multipart.FileHeader
}

type Response struct {
 Status int
 ContentType string
 Headers http.Header
 Cookies []*http.Cookie
 Out http.ResponseWriter
}

	As part of handling a HTTP request, Revel instantiates an instance of a
revel.Controller [https://godoc.org/github.com/revel/revel#Controller].

	It then sets all of the properties on the embedded revel.Controller.

Extending the Controller

A Controller is any type that embeds
revel.Controller [https://godoc.org/github.com/revel/revel#Controller] either directly or
indirectly.
This means controllers may extend other classes, here is an example on how to do that.

	Note in the MyController the BaseController reference is NOT a pointer

type (
	BaseController struct {
		*revel.Controller
	}
)
type (
	MyController struct {
		BaseController
	}
)

title: Crypto
layout: manual
group: Reference

Revel provides a Sign function with which application developers
can generate signatures using the configured application secret key.

title: Custom Mux
layout: manual
group: Reference

Revel provides an ability to add a custom Mux into the framework. This is useful if you are
using a package that already includes a HTTP mux (such as Go swagger or Hugo).
You use the AddInitEventHandler
to inject the
mux into the server engine. You pass the prefix of the path that will be handled by the mux
and the http.HandlerFunc in the case were the Go engine is used (or fasthttp.RequestHandler
for the FastHTTP engine). The mux is called for every request that begins with the prefix.
Revel matches the longest prefix first, then the shorter one (longer is defined by having more
forward slashes)

Notes

	Revel filters are not called for the custom MUX.

	Requests will still be logged.

Below is a small implementation of this

	revel.AddInitEventHandler(func(event revel.Event, i interface{}) revel.EventResponse {
		switch event {
		case revel.ENGINE_BEFORE_INITIALIZED:
 revel.AddHTTPMux("/this/is/a/test", http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintln(w, "Hi there, ", r.URL.Path)
 w.WriteHeader(200)
 }))
 revel.AddHTTPMux("/this/is/", http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintln(w, "Hi there, shorter prefix", r.URL.Path)
 w.WriteHeader(200)
 }))

		}
		return 0
	})

title: Database
layout: manual
github:
labels:
- topic-controllers
godoc:
- Config

Revel does not come configured with a database or ORM interface. There are modules like
GORM [https://github.com/revel/modules/tree/master/orm/gorm] that can be used to provide this
functionality. But ultimately it’s up to the developer what to use and how to use.

	The booking sample application has an example
ORM [https://en.wikipedia.org/wiki/Object-relational_mapping] using GORP [https://github.com/go-gorp/gorp].

Config

	The appconf does have a database section for usage.

	Use revel.Config [https://godoc.org/github.com/revel/config#Context] to access.

func InitDB() {
 driver := revel.Config.StringDefault("db.driver", "mysql")
 connect_string := revel.Config.StringDefault("db.connect", "root:root@localhost/test")

 Db, err = sql.Open(driver, connect_string)

}

Example Db Setup

Create an InitDB() function in for example github.com/username/my-app/app/init.go.

package app

import (
 "github.com/revel/revel"
 _ "github.com/lib/pq"
 "database/sql"
)

var DB *sql.DB

func InitDB() {
 connstring := fmt.Sprintf("user=%s password='%s' dbname=%s sslmode=disable", "user", "pass", "database")

 var err error
 DB, err = sql.Open("postgres", connstring)
 if err != nil {
 revel.INFO.Println("DB Error", err)
 }
 revel.INFO.Println("DB Connected")
}

func init() {

 revel.Filters = []revel.Filter{
 revel.PanicFilter, // Recover from panics and display an error page instead.
 ... snipped ...
 revel.CompressFilter, // Compress the result.
 revel.ActionInvoker, // Invoke the action.
 }

 revel.OnAppStart(InitDB)
 ...
}

This can then be used in code

import(
 "github.com/username/my-app/app"
)

func GetStuff() MyStruct {

 sql := "SELECT id, name from my_table "
 rows, err := app.DB.Query(sql)
 ... do stuff here ...
}

title: Debugging
layout: manual

By default, the revel run command without a
run_mode defaults to dev.

Hot Reload

As part of the development cycle, Revel can be configured to ‘watch’ for
local file changes, and recompile as necessary.

	See the watchers in conf/appconf

Testing Module

Revel comes with a test suite, see the Testing Module

Debug using gdb

Go applications can be debugged using the GNU Debugger (GDB) [http://www.gnu.org/software/gdb/].

	Debugging with GDB [http://sourceware.org/gdb/current/onlinedocs/gdb/]

	See Go’s official GDB guide [http://golang.org/doc/gdb]

	This excellent go example at lincon loop blog post [https://lincolnloop.com/blog/introduction-go-debugging-gdb/]

	A StackOverflow - Revel debugging HOWTO [http://stackoverflow.com/questions/23952886/revel-debugging-how-to] question

Intellij debugging (goland)

	Create your project, for this example i will be using canonical “revel new github.com/myaccount/my-app”

	“revel run github.com/myaccount/my-app” to generate tmp/main.go - this file is needed by intellij

	Shutdown the running server

	Create project in intellij from existing sources

	Create run configuration and in “Program arguments” add “-importPath github.com\myaccount\my-app -srcPath

 title: Deployment layout: manual

title: Deployment
layout: manual

Revel does NOT have connection/resource management and all production deployments
should have a HTTP proxy that is properly configured in front of all Revel HTTP requests.

Overview

There are a couple common deployment routes:

	Build the app locally and copy it to the server.

	On the server, pull the updated code, build it, and run it.

	Use Heroku to manage deployment.

The command line sessions demonstrate interactive deployment; typically in production
a tool would be used for daemonizing the web server. Some common tools are:

	Ubuntu Upstart [http://upstart.ubuntu.com]

	systemd [http://www.freedesktop.org/wiki/Software/systemd]

	Supervisor [http://supervisord.org/]

[bookmark: build-local]

Build locally

Revel apps may be deployed to machines that do not have a functioning Go
installation. The command line tool provides the package command
which compiles and zips the app, along with a script to run it.

Run and test my app.
$ revel run import/path/to/app
.. test app ..

Package it up.
$ revel package import/path/to/app
Your archive is ready: app.tar.gz

Copy to the target machine.
$ scp app.tar.gz target:/srv/

Run it on the target machine.
$ ssh target
$ cd /srv/
$ tar xzvf app.tar.gz
$ bash run.sh

This only works if you develop and deploy to the same architecture, or if you configure your go
installation to build to the desired architecture by default. See below for cross-compilation support.

Incremental deployment

Since a statically-linked binary with a full set of assets can grow to be quite
large, incremental deployment is supported.

Build the app into a temp directory
$ revel build import/path/to/app /tmp/app

Rsync that directory into the home directory on the server
$ rsync -vaz --rsh="ssh" /tmp/app server

Connect to server and restart the app.
...

Rsync has full support for copying over ssh. For example, here’s a more complicated connection.

A more complicated example using custom certificate, login name, and target directory
$ rsync -vaz --rsh="ssh -i .ssh/go.pem" /tmp/myapp2 ubuntu@ec2-50-16-80-4.compute-1.amazonaws.com:~/rsync

[bookmark: build-server]

Build on the server

This method relies on your version control system to distribute updates. It
requires your server to have a Go installation. In return, it allows you to
avoid potentially having to cross-compile.

$ ssh server
... install go ...
... configure your app repository ...

Move to the app directory (in your GOPATH), pull updates, and run the server.
$ cd gocode/src/import/path/to/app
$ git pull
$ revel run import/path/to/app prod

[bookmark: heroku]

Heroku

Revel maintains a Heroku Buildpack, allowing one-command deploys.

	Visit heroku-buildpack-go-revel [https://github.com/revel/heroku-buildpack-go-revel] on github

	See the README [https://github.com/revel/heroku-buildpack-go-revel/blob/master/README] for usage instructions.

Boxfuse and Amazon Web Services

Boxfuse [https://boxfuse.com] comes with first-class support for Revel apps with one-command deploys to AWS.

	Visit the Get Started with Boxfuse and Revel [https://boxfuse.com/getstarted/revel] guide to be up and running on AWS in minutes

	See the Boxfuse Revel reference documentation [https://boxfuse.com/docs/payloads/revel] for details.

Cross-compilation

In order to create a cross-compile environment, you need to build go from source.
See
Installing Go from source [http://golang.org/doc/install/source]
for more information.
You must properly set your $PATH and $GOPATH variables, otherwise if there is an existing
binary Go package, you will get into serious errors.

When you have a go compiler successfully setup, build the cross-compiler by
specifying the target environment with GOOS and GOARCH environment variables. See
Optional environment variables [http://golang.org/doc/install/source#environment]
for more information.

$ cd /path/to/goroot/src
$ GOOS=linux GOARCH=amd64 ./make.bash --no-clean
$ GOOS=windows GOARCH=386 ./make.bash --no-clean

Install revel on the new environment and you are set to go with the packaging.

$ GOOS=linux GOARCH=amd64 revel package import/path/to/app

Copy the resulting tarball to your target platform.

 title: Frequently Asked Questions layout: manual

title: Frequently Asked Questions
layout: manual

	Revel at StackOverflow [http://stackoverflow.com/questions/tagged/revel]

How do I integrate existing http.Handlers with Revel ?

As shown in the concept diagram, The server engine is responsible
for routing of the traffic, you can install your own mux on the GoServerEngine
once it is initialized. Requests that are sent through the GoServerEngine handler
will be processed by Revel which creates the Controller instance and passes the request to the
Filter Chain.

Applications may integrate existing http.Handlers by doing the following:

 func installHandlers() {
 revel.AddInitEventHandler(func(event int, _ interface{}) (r int) {
 if event==revel.ENGINE_STARTED {
 var (
 serveMux = http.NewServeMux()
 revelHandler = revel.CurrentEngine.(*revel.GoHttpServer).Server.Handler
)
 serveMux.Handle("/", revelHandler)
 serveMux.Handle("/path", myHandler)
 revel.CurrentEngine.(*revel.GoHttpServer).Server.Handler = serveMux

 }
 return
 })
}

func init() {
 revel.OnAppStart(installHandlers)
}

What is the relationship between interceptors, filters, and modules ?

	Modules are packages that can be plugged into an application. They allow
sharing of controllers, views, assets, and other code between multiple Revel
applications (or from third-party sources).

	Filters are functions that may be hooked into the request processing
pipeline. They generally apply to the application as a whole and handle
technical concerns, orthogonal to application logic.

	Interceptors are a convenient way to package data and behavior, since
embedding a type imports its interceptors and fields. This makes interceptors
useful for things like verifying the login cookie and saving that information
into a field. Interceptors can be applied to one or more controllers.

Hot Reload is really slow with sqlite3 ?

	The github.com/mattn/go-sqlite3 [https://github.com/mattn/go-sqlite3] package has a five megabyte .c file.

	When building the package, this .c file is compiled and building a 5mb .c takes a while.

	So unless you go install it. the package is built every time you build a package which depends on it.

	See bug 290 [https://github.com/revel/revel/issues/290#issuecomment-52385218]

 go install github.com/mattn/go-sqlite3

Is there an SMTP mailer ?

Revel previously had a mailer, but this was removed (#633 [https://github.com/revel/revel/pull/633])
in favour of a third party flexibility/quality/DRY. See:

	github.com/jordan-wright/email [https://github.com/jordan-wright/email]

	Native Go [https://github.com/golang/go/wiki/SendingMail]

 title: Filters layout: manual github: labels: - topic-filter godoc: - Filter - Filters

title: Filters
layout: manual
github:
labels:
- topic-filter
godoc:
- Filter
- Filters

Filters are the middleware and are individual functions that make up the
request processing pipeline. They execute all of the framework’s functionality.

The Filter [https://godoc.org/github.com/revel/revel#Filter] type is a simple function:

 type Filter func(c *Controller, filterChain []Filter)

Each filter is responsible for pulling the next filter off of the filter chain
and invoking it. Below is the default filter stack:

// The default set of global filters.
// Can be set in an application on initialization.
var Filters = []Filter{
	PanicFilter, // Recover from panics and display an error page instead.
	RouterFilter, // Use the routing table to select the right Action
	FilterConfiguringFilter, // A hook for adding or removing per-Action filters.
	ParamsFilter, // Parse parameters into Controller.Params.
	SessionFilter, // Restore and write the session cookie.
	FlashFilter, // Restore and write the flash cookie.
	ValidationFilter, // Restore kept validation errors and save new ones from cookie.
	I18nFilter, // Resolve the requested language
	InterceptorFilter, // Run interceptors around the action.
	CompressFilter, // Compress the result.
	ActionInvoker, // Invoke the action.
}

Filter chain configuration

Global configuration

Applications may configure the filter chain by re-assigning the revel.Filters [https://godoc.org/github.com/revel/revel#Filters]
variable in init(). By default this will be in app/init.go [https://github.com/revel/revel/blob/master/skeleton/app/init.go] for a newly
generated app.

func init() {
	// The filters for my app
	revel.Filters = []Filter{
		PanicFilter, // Recover from panics and display an error page instead.
		RouterFilter, // Use the routing table to select the right Action
		ParamsFilter, // Parse parameters into Controller.Params.
		FilterConfiguringFilter, // A hook for adding or removing per-Action filters.
		SessionFilter, // Restore and write the session cookie.
		FlashFilter, // Restore and write the flash cookie.
		ValidationFilter, // Restore kept validation errors and save new ones from cookie.
		I18nFilter, // Resolve the requested language
		InterceptorFilter, // Run interceptors around the action.
		CompressFilter, // Compress the result. [^1]
		ActionInvoker, // Invoke the action.
	}
}

Every Request [https://godoc.org/github.com/revel/revel#Request] is sent down this chain, from top to bottom.

Per-Action configuration

Although all requests are sent down the revel.Filters chain, Revel also
provides a
FilterConfigurator,
which allows the developer to add, insert, or remove filter stages based on the
Action or Controller.

This functionality is implemented by the FilterConfiguringFilter [https://godoc.org/github.com/revel/revel#FilterConfiguringFilter], itself a
filter stage. For example to add a filter to all the actions for a MyController you can

func init() {
	revel.FilterController(MyController{}).Insert(MyAuthFilter, revel.BEFORE, revel.ActionInvoker)
}

Implementing a Filter

Keep the chain going

Filters are responsible for invoking the next filter to continue the request
processing. This is generally done with an expression as shown here:

var MyFilter = func(c *revel.Controller, fc []revel.Filter) {
	// .. do some pre-processing ..

	fc[0](c, fc[1:]) // Execute the next filter stage.

	// .. do some post-processing ..
}

Getting the app Controller type

Filters receive the base Controller [https://godoc.org/github.com/revel/revel#Controller] type as an
argument, rather than the actual Controller type that was invoked. If your
filter requires access to the actual Controller type that was invoked, it may
grab it with the following trick:

var MyFilter = func(c *revel.Controller, fc []revel.Filter) {
	if ac, ok := c.AppController.(*MyController); ok {
		// Have an instance of *MyController...
	}

	fc[0](c, fc[1:]) // Execute the next filter stage.
}

Note: this pattern is frequently an indicator that
interceptors may be a better mechanism to accomplish the
desired functionality.

[^1]: Compress engine needs the application configuration option results.compressed=true in order to activate

 title: Messages layout: manual

title: Messages
layout: manual

Messages are used to externalize pieces of text in order to be able to provide translations for them. Revel
supports message files organized per language, automatic locale look-up, cookie-based overrides and message
nesting and arguments.

Glossary

	Locale: a combination of language and region that indicates a user language preference, eg. en-US.

	Language: the language part of a locale, eg. en. Language identifiers are expected to be ISO 639-1 codes [http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes].

	Region: the region part of a locale, eg. US. Region identifiers are expected to be ISO 3166-1 alpha-2 codes [http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2].

Implementation Methods

Revel allows you to implement internalization at template, or as embedded messages.

Templates when loading will automatically look for a region specific template first

app/
 views/
 Index/App.html.en
 Index/App.html.fr
 ...

You can also include templates that will check for regions automatically using
the i18ntemplate. This tag acts like a traditional template tag
except that it will automatically choose the region based on the ViewArgs passed in.
(optionally the region may be specified as the third argument)
It can be used on a page like

{% raw %}

<p>
 Embedded Regional Template Example
 {{i18ntemplate "templateName" .}}
</p>

{% endraw %}

Example Application

The way Revel handles message files and internationalization in general is similar to most other web frameworks out there. For those of you that wish to get
started straight away without going through the specifics, there is a sample application
examples/i18n [https://github.com/revel/examples/tree/master/i18n] which demonstrates the basics.

Configuration

 	File
 	Option
 	Description

 	
 app.conf

 	
 i18n.cookie

 	
 The name of the language cookie. Should always be prefixed with the Revel cookie prefix to avoid cookie name conflicts.

 	
 app.conf

 	
 i18n.default_language

 	
 The default locale to use in case no preferred locale could be found.

 	
 app.conf

 	
 i18n.locale.parameter

 	
 The name of the parameter to use for switching the current language of the application.
		The parameter value is checked before other methods to resolve the client locale.

Message Files

Messages are defined in message files. These files contain the actual text that will be used while rendering the view (or elsewhere in your application if you so desire).
When creating new message files, there are a couple of rules to keep in mind:

	All message files should be stored in the messages/ directory in the application root.

	The file extension determines the language of the message file and should be an ISO 639-1 code [http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes].

	Message files should be UTF-8 encoded. While this is not a hard requirement, it is best practice.

	Each message file is effectively a goconfig file [https://github.com/revel/config] and supports all goconfig features.

Organizing Message Files

There are no restrictions on message file names; a message file name can be anything as long as it has a valid extention. There is also no restriction on the amount
of files per language. When the application starts, Revel will parse all message files with a valid extension in the messages/ directory and merge them according to their
language. This means that you are free to organize the message files however you want.

	Refer to organization for the directory layout

For example, you may want to take a traditional approach and define one single message file per language:

messages/
 messages.en
 messages.fr
 ...

Another approach would be to create multiple files for the same language and organize them based on the kind of messages they contain:

messages/
 labels.en
 warnings.en
 labels.fr
 warnings.fr
 ...

Important note: while it's technically possible to define the same message key in multiple files with the same language, this will result in unpredictable behaviour. When using multiple files per language, take care to keep your message keys unique so that keys will not be overwritten after the files are merged!

Message keys and values

A message file is for all intents and purposes a goconfig file [https://github.com/revel/goconfig]. This means that messages should be defined according to the tried and
tested key-value format:

{% highlight ini %}
key=value
{% endhighlight %}

For example:
{% highlight ini %}
greeting=Hello
greeting.name=Rob
greeting.suffix=, welcome to Revel!
{% endhighlight %}

Sections

A goconfig file is separated into sections. The default section always exists and contains any messages that are not defined in a specific section. For example:
{% highlight ini %}
[DEFAULT]
key=value

[SECTION]
key2=value2
{% endhighlight %}

The key=value message is implicitly put in the default section as it was not defined under another specific section.

For message files all messages should be defined in the default section unless they are specific to a certain region (see
Regions for more information).

Note: sections are a goconfig feature.

Regions

Region-specific messages should be defined in sections with the same name. For example, suppose that we want to greet all English speaking users with "Hello", all British
users with "Hey" and all American users with "Howdy". In order to accomplish this, we could define the following message file greeting.en:
{% highlight ini %}
greeting=Hello

[GB]
greeting=Hey

[US]
greeting=Howdy
{% endhighlight %}

For users who have defined English (en) as their preferred language, Revel would resolve greeting to Hello. Only in specific cases where the user’s locale has been
explicitly defined as en-GB or en-US would the greeting message be resolved using the specific sections.

Important: messages defined under a [section] that is not a valid region are technically allowed but ultimately useless as they will never be resolved.

Referencing and arguments

Referencing

Messages in message files can reference other messages. This allows users to compose a single message from one or more other messages. The syntax for referencing other messages
is %(key)s. For example:
{% highlight ini %}
greeting=Hello
greeting.name=Rob
greeting.suffix=, welcome to Revel!
greeting.full=%(greeting)s %(greeting.name)s%(greeting.suffix)s
{% endhighlight %}

Notes:

 	Referencing is a goconfig feature.

 	Because message files are merged, it's perfectly possible to reference messages in other files provided they are defined for the same language.

Arguments

Messages support one or more arguments. Arguments in messages are resolved using the same rules as the go fmt package. For example:
{% highlight ini %}
greeting.name_arg=Hello %s!
{% endhighlight %}
Arguments are resolved in the same order as they are given, see Resolving messages.

Resolving the client locale

In order to figure out which locale the user prefers Revel will look for a usable locale in the following places:

	Language Parameter value

	If in app.conf the value for i18n.locale.parameter is set,
this will be the first method to resolve the client language preference. e.g. i18n.locale.parameter=lang.

	If this parameter has a value, its value is assumed to be the current locale.

	All other resolution methods will be skipped when a language parameter value has been found.

	Language cookie

	For every request, Revel will look for a cookie with the name defined in the application configuration i18n.cookie.

	If such a cookie is found, its value is assumed to be the current locale.

	All other resolution methods will be skipped when a cookie has been found.

	Accept-Language HTTP header

	Revel will automatically parse the Accept-Language HTTP header for each incoming request.

	Each of the locales in the Accept-Language header value is evaluated and stored in order of qualification according to the
HTTP specification [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4] - in the current Request instance.

	This information is used later by the various message resolving functions to determine the current locale.

	For more information see Parsed Accept-Language HTTP header.

	Default language

	When all of the look-up methods above have returned no usable client locale, Revel will use the i18n.default_language as
defined in the conf/app.conf file.

Note: When the requested message could not be resolved at all, a specially formatted string containing the original message is returned.

Note: the Accept-Language header is always parsed and stored in the current Request, even when a language cookie has been found. In such a case, the values from the header are simply never used by the message resolution functions, but they're still available to the application in case it needs them.

Retrieving the current locale

The application code can access the current locale from within a Request using the Request.Locale property. For example:

{% highlight go %}
func (c App) Index() revel.Result {
currentLocale := c.Request.Locale
c.Render(currentLocale)
}
{% endhighlight %}

From a template, the current locale can be retrieved from the currentLocale property of viewArgs. For example:

{% capture ex %}{% raw %}
My Locale is: {{.currentLocale}}

{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}

Parsed Accept-Language HTTP header

In case the application needs access to the Accept-Language HTTP header for the current request it can retrieve it from the Request instance of the Controller. The AcceptLanguages field

	which is a slice of AcceptLanguage instances - contains all parsed values from the respective header, sorted per qualification with the most qualified values first in the slice. For example:

{% highlight go %}
func (c App) Index() revel.Result {
// Get the string representation of all parsed accept languages
c.ViewArgs[”acceptLanguageHeaderParsed”] = c.Request.AcceptLanguages.String()
// Returns the most qualified AcceptLanguage instance
c.ViewArgs[”acceptLanguageHeaderMostQualified”] = c.Request.AcceptLanguages[0]

c.Render()

}
{% endhighlight %}

For more information see the HTTP specification [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4].

Resolving messages

Messages can be resolved from either a controller or a view template.

Controller

Each controller has a Message(message string, args ...interface{}) function that can be used to resolve messages using the current locale. For example:

{% highlight go %}
func (c App) Index() revel.Result {
c.ViewArgs[”controllerGreeting”] = c.Message(”greeting”)
c.Render()
}
{% endhighlight %}

[bookmark: template]

Template

To resolve messages using the current locale from templates there is a template function msg that you can use. For example:

{% capture ex %}{% raw %}

Greetings without arguments: {{msg . "greeting"}}

Greetings: {{msg . "greeting.full.name" "Tommy Lee Jones"}}

{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}Notes:

 	The signature of the msg function is msg . "message name" "argument" "argument". If there are no arguments, simply do not include any.

 	The I18nFilter filter must be enabled (default) or the currentLocale RenderArg set for message substitution to work.

Locale by URL

Adds ability to specify a parameter to be used to set the locale.

In revel app.conf set the i18n.locale.parameter to the parameter name.

i18n.locale.parameter=locale

In routes specify the route path with the locale

GET /hotels/:locale Hotels.Index

 title: Introduction layout: manual

title: Introduction
layout: manual

Ready to have a blast building apps? Let’s get started!

	Beginner Resources

	Read about the concepts

	Browse the example applications

	Read the API docs at godoc [https://godoc.org/github.com/revel/revel]

	Read the Revel cmd documentation

	Dev Support

	[image: http://img.shields.io/badge/chat-online-brightgreen.svg]Gitter Chat [https://gitter.im/revel/community]

	StackOverflow [http://stackoverflow.com/questions/tagged/revel]

	GitHub [https://github.com/revel/revel/issues]

	Contribute to Revel

	Read CONTRIBUTING [https://github.com/revel/revel/blob/master/CONTRIBUTING]

	Check the Development Workflow [https://github.com/revel/revel/wiki/Revel-Workflow]

	Submit your PR or request a feature

 title: Interceptors layout: manual github: labels: - topic-controller godoc: - InterceptFunc - InterceptMethod - When

title: Interceptors
layout: manual
github:
labels:
- topic-controller
godoc:
- InterceptFunc
- InterceptMethod
- When

An Interceptor is a function that is invoked by the framework BEFORE or AFTER an action invocation. It allows a form of
Aspect Oriented Programming [http://en.wikipedia.org/wiki/Aspect-oriented_programming],
which is useful for some common concerns such as:

	Request logging

	Error handling

	Statistics logging

	Authentication handling

In Revel, an interceptor can take one of three forms:

	A Function Interceptor

	A Method Interceptor

	A Controller Auto Interceptor
using the revel.BeforeAfterFilter filter

An Interceptor has an intercept point in the request (When [https://godoc.org/github.com/revel/revel#When])
and returns a Result or nil.

NOTE: Interceptors are called in the order that they are added.
[bookmark: function_interceptor]

Function Interceptor

	A function meeting the InterceptorFunc [https://godoc.org/github.com/revel/revel#InterceptorFunc] interface.

	Does not have access to the specific Controller invoked.

	May be applied to any / all Controllers in an application (by adding lines of code).

// simple example or user auth
func checkUser(c *revel.Controller) revel.Result {
 if user := MyCheckAuth(c); user == nil {
 c.Flash.Error("Please log in first")
 return c.Redirect(App.Index)
 }
 return nil
}
func doNothing(c *revel.Controller) revel.Result { return nil }

func init() {
 revel.InterceptFunc(checkUser, revel.BEFORE, &App{})
 revel.InterceptFunc(doNothing, revel.AFTER, &App{})
 revel.InterceptFunc(checkUser, revel.BEFORE, &AnotherController{})
}

[bookmark: method_interceptor]

Method Interceptor

	A InterceptorMethod [https://godoc.org/github.com/revel/revel#InterceptorMethod] method accepting no arguments and returning a revel.Result.

	May only intercept calls to the bound Controller.

	May modify the invoked controller as desired.

	A method interceptor signature may have one of these two forms, or both:

	func (c AppController) example() revel.Result

	func (c *AppController) example() revel.Result // pointer

// simple method example

func (c Hotels) checkUser() revel.Result {
 if user := connected(c); user == nil {
 c.Flash.Error("Please log in first")
 return c.Redirect(App.Index)
 }
 return nil
}

func init() {
 revel.InterceptMethod(Hotels.checkUser, revel.BEFORE)
 revel.InterceptMethod(Room.checkVacant, revel.BEFORE)
}

Controller Auto Interceptor

Controllers that have methods named Before,After,Finally,Panic, will be called in the
same manner as the interceptor does. The method signature is a little different then normal
to allow for method Overriding and cascades. ie if Application has
GorpController controller embedded inside it and both define the
Before method then what happens is the GorpController.Before
is invoked before the Application.Before. The method signature must match the
following syntax

func (c Application) Before() (r revel.Result, a Application) {
...
func (c *GorpController) Before() (result revel.Result, controller *GorpController) {

Notice along with the revel.Result we return the Controller type.
This is so when the application starts up it can determine which method belongs to what
field in the controller (currently Go does not tell you this information).
These work identical to the revel.Interceptors without any configuration.

On the Before method the deepest embedded struct with the Before method is run first,
then the next deepest and so on until the top level. After, Finally, Panic
are run from the top down

Controller Auto Interceptor Implementation

Add the filter revel.BeforeAfterFilter to revel.Filters on app/init.go.
Ensure your function names match func (c Application) Before() (r revel.Result, a Application)

[bookmark: intercept_times]

Intercept Times

An interceptor can be registered to run at four points in the request lifecycle;
defined in When [https://godoc.org/github.com/revel/revel#When]:

	BEFORE

	After the request has been routed, the session, flash, and parameters decoded, but before the action has been invoked.

	AFTER

	After the request has returned a Result, but before that Result has been applied. These interceptors are not invoked if the action panicked.

	PANIC

	After a panic [http://golang.org/pkg/builtin/#panic] exits an action or is raised from applying the returned Result.

	FINALLY

	After an action has completed and the Result has been applied.

[bookmark: results]

Results

Interceptors typically return nil, in which case the request continues to
be processed without interruption.

The effect of returning a non-nil revel.Result depends on When() [https://godoc.org/github.com/revel/revel#When] the interceptor
was invoked.

	BEFORE

	No further interceptors are invoked, and neither is the action.

	AFTER

	All interceptors are still run.

	PANIC

	All interceptors are still run.

	FINALLY

	All interceptors are still run.

In all cases, any returned Result will take the place of any existing Result.

	However, in the BEFORE case, the returned Result is guaranteed to be final,

	While in the AFTER case it is possible that a further interceptor could emit its own Result.

 title: Logging layout: manual github: labels: - topic-log godoc: - AppLog - RevelLog

title: Logging
layout: manual
github:
labels:
- topic-log
godoc:
- AppLog
- RevelLog

When logging in Revel you should use the controller.Log [https://godoc.org/github.com/revel/revel#Controller]
If you have services running in the background you should use the revel.AppLog [https://godoc.org/github.com/revel/revel#AppLog]

Internally Revel uses log15 [https://github.com/inconshreveable/log15] to do the core work, more
information about the log handlers can be found there.

Below is the logger interface.

	MultiLogger interface {
		// New returns a new Logger that has this logger's context plus the given context
		New(ctx ...interface{}) MultiLogger

		// SetHandler updates the logger to write records to the specified handler.
		SetHandler(h LogHandler)

		Debug(msg string, ctx ...interface{})
		Debugf(msg string, params ...interface{})
		Info(msg string, ctx ...interface{})
		Infof(msg string, params ...interface{})
		Warn(msg string, ctx ...interface{})
		Warnf(msg string, params ...interface{})
		Error(msg string, ctx ...interface{})
		Errorf(msg string, params ...interface{})
		Crit(msg string, ctx ...interface{})
		Critf(msg string, params ...interface{})

		//// Logs a message as an Crit and exits
		Fatal(msg string, ctx ...interface{})
		Fatalf(msg string, params ...interface{})
		//// Logs a message as an Crit and panics
		Panic(msg string, ctx ...interface{})
		Panicf(msg string, params ...interface{})
	}

Usage

Log Contexts

Logging using these Debug,Info,Warn,Error,Crit methods will expect the
message values in key value pairs. For example revel.AppLog.Debug("Hi there")
is fine revel.AppLog.Debug("Hi there", 25) will panic (only passed one argument for
the context). revel.AppLog.Debug("Hi there","age",25,"sex","yes","state",254) is fine.
This will produce a log message that includes the context age,sex,state like .

INFO 2017/08/02 22:31:41 test.go:168: Hi There age=25 sex=yes state=254

or in json like

{"caller":"test.go:168","lvl":3,"t":"2017-08-02T22:34:08.303112145-07:00",
"age":25,"sex":"yes","state":254}

If you want you can fork a new log from the control logger to continue using in your code or to pass to the model - consider this

func (c *FooController) Edit(id int) revel.Result {
 log := c.Log.New("id",id)
 log.Debug("Reading the output")
 output,err := model.Load(log, id)
 if err!=nil {
 log.Errorf("Failed to load :%s",err.Error())
 }
 ...
}

Could produce the following output (if an error occurred)

INFO 22:31:41 app test.go:168: Reading the output id=25
ERROR 22:31:41 app test.go:168: Failed to load: Not Found id=25

Log formats

Logging using these Debugf,Infof,Warnf,Errorf,Critf methods allows you to output a formatted string for the message. like
revel.AppLog.Debugf("Hi %s ", "Grace"). Only existing contexts will be applied to them. For example look at the log.Errorf below

func (c *FooController) Edit(id int) revel.Result {
 log := c.Log.New("id",id)
 log.Debug("Reading the output")
 output,err := model.Load(log, id)
 if err!=nil {
 log.Errorf("Failed to load :%s",err.Error())
 }
 ...
}

Could produce the following output (if an error occurred)

INFO 22:31:41 app test.go:168: Reading the output id=25
ERROR 22:31:41 app test.go:168: Failed to load: Not Found id=25

App.conf

Configuration examples

	All log messages that match the filter module=app to stdout,
all messages that are error messages send to stderr. Order is significant here,
the second statement log.error.output = stderr replaces the error handler
specified by the log.all of the first line.

log.all.filter.module.app = stdout # Log all loggers for the application to the stdout
log.error.output = stderr # Log all loggers for Revel errors to the stderr

	Existing configurations will work as well, you can even expand on them

log.debug.output = stdout # Outputs to the stdout
log.info.output = myloghandler # Outputs to the function in LogFunctionMap
log.warn.output = stderr # Outputs to the stderr
log.request.output = myloghandler
log.error.output = somefile/log.json # Outputs to the file specified file using JSON format
log.error.filter.module.revel = stdout # Filters based on context module.revel, outputs to stdout
log.error.filter.module.revel.context.route = stdout # Filters based on context module.revel, context route outputs to stdout
log.critical.output = stderr # Outputs to the stderr

To summarize the log output can be a named function contained in logger.LogFunctionMap. If that
function does not exist then it is assumed to be a file name, the file name extension will choose
the output format. The stderr and stdout are two predefined functions which may be overriden if desired

Filtered logging

A log filter can specify a series of key, values that will only be logged to if ALL the
keys and values match a context in the log. For example the following will log at level error
to the stdout if the log message contains the context module=revel

log.error.filter.module.revel = stdout

Filters are additive, they do not replace existing error handlers - for example in the
following error messages that are logged with the context of module=revel will be sent to the
stdout and to the json file

log.all.output = stdout
log.error.filter.module.revel = /var/log/revel/revel.json

Filters may be empty so that you can make use the additive feature, the following sends all errors to both
stdout and all-errors.json

log.all.output = stdout
log.error.filter = /var/log/revel/all-errors.json

Inverse filters can be applied by using nfilter for example, consider the following

log.all.filter.module.app = stdout # Log all loggers for the application to the stdout
log.error.output = stderr # Log all errors to stderr

In this case any application error would end up logging to both stdout and stderr - which in some cases
(like output to a file) would be
useful but if you do not want to send duplicate messages to the console you can do the following

log.all.filter.module.app = stdout # Log all loggers for the application to the stdout
log.error.nfilter.module.app = stderr # Everything else that logs an error to stderr

The log.error.nfilter.module.app is the inversion of the first filter, with the type of error.

File logging

For file logging revel uses lumberjack.Logger [https://github.com/natefinch/lumberjack]
to stream the output to file. The following configuration options can be set

log.compressBackups = true # Compress the backups after rotation default true
log.maxsize = 1024 # The max file size before rotation in MB degault 10G
log.maxagelog.maxage= 14 # The max age of the file before rotation occurs default 14 days
log.maxbackups = 14 # The max number of old log files to keep default 14

These are global options, you can however apply unique options by
Customizing Log Handling

More configuration options

log.colorize = true # Turns off colorization for console output
log.smallDate = true # Outputs just the time for the terminal output

Customizing Log Handling

The following code adds a new output called stdoutjson

	logger.LogFunctionMap["stdoutjson"]=
		func(c *logger.CompositeMultiHandler, options *logger.LogOptions) {
			// Set the json formatter to os.Stdout, replace any existing handlers for the level specified
			c.SetJson(os.Stdout, options)
		}
	logger.LogFunctionMap["longtermstorage"]=
		func(c *logger.CompositeMultiHandler, options *logger.LogOptions) {
			options.SetExtendedOptions("maxAgeDays",30,"maxSizeMB",1024*10,"maxBackups",50)
			c.SetJsonFile("/var/log/revel/longterm.json", options)
		}

This setting in app.conf would activate the above logger for all log messages of level Warn
and error messages from the module=revel

log.warn.output = stdoutjson
log.error.filter.module.revel = longtermstorage

It is important to note that your logger function may be called with a nil options.Ctx
(this is the revel.Config).

The special cases

	log.request.output assigns a handler for messages which are on the info channel and have the
section=requestlog assigned to them. If log.request.output is not specified then messages will
be logged directly to the same handler handling the info log level.

	log.trace usage in initialization files is deprecated and replace by log.debug

	If log.critical is not specified and log.error has been. Then the error handler
will receive the critical messages as well

Internal structure

Revel provides a single root logger called revel.RootLog [https://godoc.org/github.com/revel/revel#RootLog].
The logger is forked into the following loggers

	revel.RevelLog [https://godoc.org/github.com/revel/revel#AppLog] Contains context of module=revel

	revel.AppLog [https://godoc.org/github.com/revel/revel#AppLog] Contains context of module=app

	module.Log [https://godoc.org/github.com/revel/revel#Module] on Startup of revel,
it contains the context of module=modulename.

revel.AppLog [https://godoc.org/github.com/revel/revel#AppLog] is forked to create a logger for

	controller.Log [https://godoc.org/github.com/revel/revel#Controller]A new instance is created on every request, and contains context information like,
the source ip, request path and request method.
If the controller handling the response is from a module it will be forked from
module.Log [https://godoc.org/github.com/revel/revel#Module]

Request logger

Sample format: terminal format

log.request.output = stdout

be logged directly to the same handler handling the info log level.

INFO 2017/08/02 22:31:41 server-engine.go:168: Request Stats ip=::1 path=/public/img/favicon.png method=GET action=Static.Serve namespace=static\\ start=2017/08/02 22:31:41 status=200 duration_seconds=0.0007656

JSON Format

log.request.output = /var/log/revel/requestlog.json

{"action":"Static.Serve","caller":"server-engine.go:168","duration_seconds":0.00058336,"ip":"::1","lvl":3,
 "method":"GET","msg":"Request Stats","namespace":"static\\","path":"/public/img/favicon.png",
 "start":"2017-08-02T22:34:08-0700","status":200,"t":"2017-08-02T22:34:08.303112145-07:00"}

- Issues tagged with [`log`](https://github.com/revel/revel/labels/topic-log)

 title: Namespace layout: manual

title: Namespace
layout: manual

Namespace

Namespace definition begins with the application configuration. Modules are defined inside the configuration file by module.static=github.com/revel/modules/static this defines the revel namespace of the word static to all the controllers and templates within the module. To reference the name space use the backslash in front of your controller action like below.

Route mapping inside the route file would be defined like

* /favicon.png static\Static.Serve("folder")

Module routing remains unchanged

* /debug/ module:testrunner

Reverse routing has an optional namespace as well.

<td>Start</td>

Namespace in the application

Referencing Namespace within the route file.

Given you had a line in the configuration importing a module like module.jobs=jobs Route mapping inside the route file would be defined like.

* /run/:id jobs\Jobs.Run

To remain backwards compatible routes without a namespace will be matched to the first controller/name within the same module space or global space. Another words, if you have a definition like below in your app folder it will be matched to the first app controller that is called Jobs with a function Run

* /run/:id Jobs.Run

Wildcard matching

You can limit the wildcard matching to a single module by having the namespace in the route like the following.

* /jobs/:controller/:action jobs\:controller.:action

Any route definitions in a module will be assumed that they are limited to only that module, unless that module prefixes a route path with a namespace

Referencing Namespace within the template.

You can reference a controller by its namespace within the application template by adding the namespace\\ operator before the controller action. For example like given the module was defined in app.conf like module.myjobs=jobs then to reference the controller action Jobs.Run the namespace should be appended in front like

<td>Start</td>

To remain backwards compatible the namespace reference is not required and the synatx {{url \Jobs.Run` $index}}will work, but it will use the first controller calledJobswith the actionRun` to perform the reverse route.

Namespaces in a Module

When building a module the application namespace that the module is imported into is unknown. So we introduce a special letter sequence _LOCAL_\ to indicate that these letters will need to be replaced within the template before the engine receives it. Then the template reverse routes function (the url template function) you should define the key _LOCAL_(.module)\ in front of url. The (.module) portion is only needed if this is referencing a different module in another namespace (see next section for more details) . When revel reads the template file it will rewrite the _LOCAL_(.module)\ portion with the namespace of the defined for example:

<td>Start</td>

Given that the module is imported as module.myjobs=jobs The template would then be realized as

<td>Start</td>

Note to remain backwards compatible the revel engine will attempt to reverse lookup a Controller.Action across all available controllers. If two controllers have the same name and action the default will be to match the first one. This will be slightly slower then a fully qualified lookup (one that has a namespace defined) is.

If a module requires another module, then there may be a conflict between how that module imported its module vs how the application imported the module. The correct way to map a imported module would be to specify the module to be included in the app.conf of the module like module.myjobs=jobs, then reference it in the template like the following

<td>Start</td>

In a module routes file this would be similarly done like

* /favicon.png _LOCAL_.static\Static.Serve("folder")

 title: Organization layout: manual

title: Organization
layout: manual

Revel requires itself and the user application to be installed into a GOPATH layout as prescribed by the go command line tool. (See “GOPATH Environment Variable” in the go command documentation [http://golang.org/cmd/go/])

[bookmark: DefaultLayout]

Default Layout

Below is the recommended layout of a Revel application, supplemented with
domain entities and services. (version 1+)

	my_gocode/ - GOPATH root

	go.mod - The go.mod file

	entities/ - domain entities

	app/ - app sources

	controllers/ - app controllers

	init.go - interceptor registration

	models/ - app domain models

	jobs/ - app domain jobs

	services/ - app domain services

	routes/ - reverse routes (generated code)

	views/ - templates

	tmp/ - app main file, generated code

	tests/ - test suites

	conf/ - configuration files

	app.conf - main configuration file

	routes - routes definition file

	messages/ - i18n message files

	public/ - static/public assets

	css/ - stylesheet files

	js/ - javascript files

	images/ - image files

Prior to version 1 this is the default layout created

	my_gocode/ - GOPATH root

	src/ - GOPATH src/ directory

	github.com/revel/revel/ - Revel source code

	bitbucket.org/me/sample/ - Sample app root

	entities/ - domain entities

	app/ - app sources

	controllers/ - app controllers

	init.go - interceptor registration

	models/ - app domain models

	jobs/ - app domain jobs

	services/ - app domain services

	routes/ - reverse routes (generated code)

	views/ - templates

	tmp/ - app main file, generated code

	tests/ - test suites

	conf/ - configuration files

	app.conf - main configuration file

	routes - routes definition file

	messages/ - i18n message files

	public/ - static/public assets

	css/ - stylesheet files

	js/ - javascript files

	images/ - image files

	vendor/ - vendor folder used for version control

	Gopkg.toml - vendor dependency management file

app/ directory

The app/ directory contains the source code and templates for your application.

	app/controllers/ - All controllers are required here

	app/views - All templates are required here

Beyond that, the application may organize its code however it wishes. Revel
will watch all directories under app/ and rebuild when it
notices any changes. Any dependencies outside of app/ will not be watched for
changes, it is the developer’s responsibility to recompile when necessary.

Additionally, Revel will import any packages within app/ (or imported
modules) that contain init() functions on startup, to ensure
that all of the developer’s code is initialized.

The app/init.go file is a conventional location to register all of the
interceptor hooks. The order of init() functions is
undefined between source files from the same package, so collecting all of the
interceptor definitions into the same file allows the developer to specify (and
know) the order in which they are run. (It could also be used for other
order-sensitive initialization in the future.)

conf/ directory

The conf/ directory contains the application’s configuration files. There are
two main configuration files:

	app.conf - the main configuration file for the application

	routes - the URL routing definition file.

messages/ directory

The messages/ directory contains all localized message files.

public/ directory

Resources stored in the public/ directory are static assets that are served
directly by the web server. Typically it is split into three standard
sub-directories for images/, css/ stylesheets and js/ JavaScript files.

The names of these directories may be anything and the developer need only update the routes.

vendor/ directory

Used by the dep tool for storing dependent packages (instead of using the GOPATH)
see versions. To initialize a vendor application see the Revel tool

 title: Request Parameters and JSON layout: manual github: labels: - topic-controller godoc: - Request - Params - Binder

title: Request Parameters and JSON
layout: manual
github:
labels:
- topic-controller
godoc:
- Request
- Params
- Binder

Revel tries to make the conversion of request
data into the desired Go types as easy and painless as possible.

	The conversion from a http request string sent
by client to another type is referred to as data binding.

	JSON data is processed when the http header ContentType is application/json
or text/json

Request Parameters

All request parameters are collected into a single Params [https://godoc.org/github.com/revel/revel#Params] object which includes:

URL path

The URL /:path parameters for the route

// path = /book/:author/:book
author := c.Params.Route.Get("author")
book := c.Params.Route.Get("book")

Query Vars

The URL ?query= parameters

// url = /foo?sort=asc&active=1
s := c.Params.Query.Get("sort")
act := c.Params.Query.Get("active")

Form Vars

Submitted POST Form values

v := c.Params.Form.Get("form_val")

File Uploads

File multipart file uploads

f := c.Params.Files["file_name"]

Combined Params

All the above combined, they values are mapped in a special way.
Params is a map[string][]string
Query parameters are assigned to the map first, then form
parameters will be appended to the the query results.

For example lets say a form is posted to foo?a=3 and the form contained
a=4,b=hi. The map Params map would look like {"a":["3","4"],"b":["hi"]}

Finally two special groups of parameters are assigned to the map
(overriding both Query and Forms). They are the URL :parameters as specified
in the route file, and the Fixed Paramaters as specified in the route file
as well.

c.Params.Get("foo")

JSON Data

Posted JSON data is read when the http header ContentType is application/json
or text/json. The raw bytes are stored in the Param.JSON []byte

JSON data will be automatically unmarshalled to the first structure or map that is
encountered in the Action Argument.

When calling c.Params.Bind(target,paramname), JSON data is always ignored, you can call
c.Params.BindJSON(target) to bind the JSON data to the specified object. You must pass
a pointer to the c.Params.BindJSON(target) function.

func (c Hotels) Show() revel.Result {
 var jsonData map[string]interface{}
 c.Params.BindJSON(&jsonData)
 ...
}

Important:

	All params except File are golang’s native url.Values [http://www.golang.org/pkg/net/url/#Values] which provide the accessors.

	All values are map to slices, a .Get() will return first. Use map directly to get at multiple values.

	Revel’s data-binding mechanisms helps with non-string values such as dates or floats.

	Golang’s native url.Values [http://www.golang.org/pkg/net/url/#Values] provides accessors for simple values.

Action arguments

Parameters may be accepted directly as method arguments by the action. For
example:

func (c AppController) DoWork(name string, ids []int, user User, img []byte) revel.Result {
	...
}

	Before invoking the action (in this case the AppController.DoWork method),
Revel asks its Binder to convert parameters of those names to the requested data type.

	If the binding is unsuccessful for any reason, the parameter will have the zero value for its type.

[bookmark: binder]

Binder

	To bind a parameter to a data type, use Revel’s Binder [https://godoc.org/github.com/revel/revel#Binder].

	The Binder [https://godoc.org/github.com/revel/revel#Binder] is integrated with the
Params [https://godoc.org/github.com/revel/revel#Params] object.

// Example params to binder
func (c SomeController) DoResponse() revel.Result {
	var ids []int
	c.Params.Bind(&ids, "ids")
	...
}

The following data types are supported by Revel out of the box:

	Integers of all widths

	Booleans

	Pointers to any supported type

	Slices of any supported type

	Structs

	Maps

	Maps of Structs

	time.Time for dates and times

	*os.File, []byte, io.Reader, io.ReadSeeker for file uploads

The following sections describe the syntax for these types. It is also useful
to refer to the source code [https://github.com/revel/revel/blob/master/binder.go] if more detail is required.

Booleans

The string values "true", "on", and "1" are all treated as true, otherwise it is false.

Slices

There are two supported syntaxes for binding slices; ordered and unordered.

Ordered:

?ids[0]=1
&ids[1]=2
&ids[3]=4

	results in a slice of []int{1, 2, 0, 4}

Unordered:

?ids[]=1
&ids[]=2
&ids[]=4

	results in a slice of []int{1, 2, 4}

 Only ordered slices should be used when binding a slice of structs:
?user[0].Id=1
&user[0].Name=rob
&user[1].Id=2
&user[1].Name=jenny

Structs

Structs are bound using simple dot notation:

?user.Id=1
&user.Name=rob
&user.Friends[]=2
&user.Friends[]=3
&user.Father.Id=5
&user.Father.Name=Hermes

Will bind the struct:

type User struct {
 Id int
 Name string
 Friends []int
 Father User
}
func (c SomeController) Method(user *User) revel.Result {

}

Maps

Maps are bound using simple dot notation:

?user.Id=1
&user.Name=rob
&user.Friends[]=2
&user.Friends[]=3
&user.Father.Id=5
&user.Father.Name=Harry

Will bind the map:

foo := map[string]interface{}{}
c.Params.Bind(foo, "ids")

foo={"user":{"Id":1,"Name":"rob","Friends":[2,3],"Father":{"Id":5,"Name":"Harry"}}}

Maps of Structs

If you predefine a map you can manually bind the parameter to it:

?user.Id=1
&user.Name=rob
&user.Friends[]=2
&user.Friends[]=3
&user.Father.Id=5
&user.Father.Name=Hermes

Will bind this map with a struct inside of it:

type User struct {
 Id int
 Name string
 Friends []int
 Father User
}
map[string]interface{}
foo := map[string]*User{}{"user":&User{}}
c.Params.Bind(foo, "ids")

Notice how this differs from the struct example, in the struct example we defined a parameter
of type *User, in behind the scenes Revel took any parameter name starting with user and assigned
it to the struct. In this example we define a map and a precreated struct instance of User. If we
did not precreate this instance Revel would have populated a map within the map.

 Properties must be exported in order to be bound.
[bookmark: date_time]

Date / Time

	The SQL standard date time formats of 2006-01-02, 2006-01-02 15:04 are built in.

	Alternative formats may be added to the application (see app.conf), using golang native constants [http://golang.org/pkg/time/#pkg-constants].

	Add a pattern to recognize to the TimeFormats [https://godoc.org/github.com/revel/revel#TimeFormats] variable, like the example below.

func init() {
 revel.TimeFormats = append(revel.TimeFormats, "01/02/2006")
}

[bookmark: file_uploads]

File Uploads

File uploads can be bound to any of the following types:

	*os.File

	[]byte

	io.Reader

	io.ReadSeeker

This is a wrapper around the upload handling provided by
Go’s multipart package [http://golang.org/pkg/mime/multipart/]. The bytes
stay in memory unless they exceed a threshold (10MB by default), in which case
they are written to a temp file.

	See the upload sample app [https://github.com/revel/examples/tree/master/upload]

 Binding a file upload to os.File requires Revel to write it to a
temp file (if it wasn't already), making it less efficient than the other types.

Custom Binders

The application may define its own binders to take advantage of this framework.

It needs only to implement the Binder [https://godoc.org/github.com/revel/revel#Binder] interface and register the type for which it
should be called:

var myBinder = revel.Binder{
	Bind: func(params *revel.Params, name string, typ reflect.Type) reflect.Value {...},
	Unbind: func(output map[string]string, name string, val interface{}) {...},
}

func init() {
	revel.TypeBinders[reflect.TypeOf(MyType{})] = myBinder
}

 title: Results & Responses layout: manual github: labels: - topic-controller - topic-static godoc: - Controller.Render - Controller.RenderTemplate - Controller.RenderJSON - Controller.RenderXML - Controller.RenderFile - Controller.RenderFileName - Controller.Redirect

title: Results & Responses
layout: manual
github:
labels:
- topic-controller
- topic-static
godoc:
- Controller.Render
- Controller.RenderTemplate
- Controller.RenderJSON
- Controller.RenderXML
- Controller.RenderFile
- Controller.RenderFileName
- Controller.Redirect

Actions must return a revel.Result [https://godoc.org/github.com/revel/revel#Result], which
handles the HTTP response generation and adheres to the simple interface:

{% highlight go %}
type Result interface {
Apply(req *Request, resp *Response)
}
{% endhighlight %}

revel.Controller [https://godoc.org/github.com/revel/revel#Controller] provides a few
methods to produce different results:

NOTE: From v0.14, the following changes:

	`RenderJson` is now `RenderJSON`

	`RenderJsonP` is now `RenderJSONP`

	`RenderXml` is now `RenderXML`

	Render(), RenderTemplate()

	render a template, passing arguments.

	RenderJSON(), RenderXML()

	serialize a structure to json or xml.

	RenderText()

	return a plaintext response.

	Redirect()

	redirect to another action or URL

	RenderFile(), RenderFileName()

	return a file inline or to be downloaded as an attachment.

	RenderError()

	return a 500 response that renders the errors/500.html template.

	NotFound()

	return a 404 response that renders the errors/404.html template.

	Todo()

	return a stub response (500)

Additionally, the developer may define a result with CustomResult and return that.

Setting the Status Code / Content Type

Each built-in Result has a default HTTP Status Code and Content Type. To override
those defaults, simply set those properties on the response:

func (c App) Index() revel.Result {
	c.Response.Status = http.StatusTeapot
	c.Response.ContentType = "application/dishware"
	return c.Render()
}

You can override the default status code by setting one yourself:

func (c *App) CreateEntity() revel.Result {
 c.Response.Status = 201
 return c.Render()
}

[bookmark: Render][bookmark: RenderTemplate]

Controller.Render()

Called within an action (e.g. “Controller.Action”),
Controller.Render() [https://godoc.org/github.com/revel/revel#Controller.Render] does two things:

	Adds all arguments to the controller’s ViewArgs, using their local identifier as the key.

	Executes the template “views/Controller/Action.html”, passing in the controller’s ViewArgs as the data map.

If unsuccessful (e.g. it could not find the template), an ErrorResult [https://godoc.org/github.com/revel/revel#ErrorResult] is returned instead.

This allows the developer to write:

func (c MyApp) Action() revel.Result {
	myValue := calculateValue()
	return c.Render(myValue)
}

and to use myValue in their template. This is usually more convenient than
constructing an explicit map, since in many cases the data will need to be
handled as a local variable anyway.

Note: Revel looks at the calling method name to determine the Template
path and to look up the argument names. Therefore, `c.Render()` may only be called from Actions.
{% capture ex_render %}{% raw %}
// Example using mix of render args and variables
// This renders the views/MyController/showSutuff.html template as
// eg foo={{.foo}} bar={{.bar}} abc={{.abc}} xyz={{.xyz}}

func (c MyController) ShowStuff() revel.Result {
c.ViewArgs[”foo”] = “bar”
c.ViewArgs[”bar”] = 1
abc := “abc”
xyz := “xyz”
return c.Render(xyz, abc)
}

// Example renders the views/Foo/boo.xhtml tempate
func (c MyController) XTemp() revel.Result {
c.ViewArgs[”foo”] = “bar”
c.ViewArgs[”bar”] = 1
return c.RenderTemplate(”Foo/boo.xhtml”)
}
{% endraw %}{% endcapture %}

{% highlight go %}{{ex_render}}{% endhighlight %}

[bookmark: RenderFile][bookmark: RenderFileName]

Controller.RenderFile() / Controller.RenderFileName()

Within an action it is sometimes necessary to serve a file (e.g. an attachment).
For this case the functions Controller.RenderFile() [https://godoc.org/github.com/revel/revel#Controller.RenderFile] and Controller.RenderFileName() [https://godoc.org/github.com/revel/revel#Controller.RenderFileName] are there.

The main difference is that Controller.RenderFile() needs an *os.File and Controller.RenderFileName() takes a file path as a string. Both require a Content-Disposition option which can be revel.Attachment or revel.Inline.

	revel.Attachment forces the browser to download the file. The filename and size are derived from the passed *os.File or file path.

	revel.Inline indicates the browser that it may render the file inline. Note that when browsers can’t display the file a download is still performed.

	revel.NoDisposition omits the content disposition header and let the browser figure out what to do, also omits the file name from the header.

Controller.RenderFileName() can also return an error in case the file is not found. See Controller.RenderError() [https://godoc.org/github.com/revel/revel#Controller.RenderError]

func (c App) File() revel.Result {
	f, _ := os.Open("/path/to/attachment.pdf")
	return c.RenderFile(f, revel.Inline)
}

func (c App) Filename() revel.Result {
	return c.RenderFileName("/path/to/attachment.docx", revel.Attachment)
}

[bookmark: RenderJSON][bookmark: RenderXML]

Controller.RenderJSON() / Controller.RenderXML()

The application may call
RenderJSON [https://godoc.org/github.com/revel/revel#Controller.RenderJSON],
RenderJSONP [https://godoc.org/github.com/revel/revel#Controller.RenderJSONP] or
RenderXML [https://godoc.org/github.com/revel/revel#Controller.RenderXML] and pass in any Go
type, usually a struct. Revel will serialize it using
json.Marshal [http://www.golang.org/pkg/encoding/json/#Marshal] or
xml.Marshal [http://www.golang.org/pkg/encoding/xml/#Marshal].

If results.pretty=true in conf/app.conf then serialization will be done using
MarshalIndent instead, to produce nicely indented output for human consumption.

// Simple example

type Stuff struct {
 Foo string ` json:"foo" xml:"foo" `
 Bar int ` json:"bar" xml:"bar" `
}

func (c MyController) MyWork() revel.Result {
 data := make(map[string]interface{})
 data["error"] = nil
 stuff := Stuff{Foo: "xyz", Bar: 999}
 data["stuff"] = stuff
 return c.RenderJSON(data)
 // or alternately
 // return c.RenderXML(data)
}

[bookmark: Redirect]

Redirect()

	A helper function for generating HTTP redirects [http://en.wikipedia.org/wiki/URL_redirection#HTTP_status_codes_3xx].

	It may be used in two ways and both return a 302 Temporary Redirect HTTP status code.

Redirect to an action with no arguments:

 return c.Redirect(Hotels.Settings)

	This form is useful as it provides a degree of type safety and independence from the
routing and generates the URL automatically.

Redirect to a formatted string:

return c.Redirect("/hotels/%d/settings", hotelId)

	This form is necessary to pass arguments.

	It returns a 302 Temporary Redirect status code.

[bookmark: CustomResult]

Custom Result

Below is a simple example of creating a custom revel.Result [https://godoc.org/github.com/revel/revel#Result].

Create this type:

import ("net/http")

type MyHtml string

func (r MyHtml) Apply(req *revel.Request, resp *revel.Response) {
	resp.WriteHeader(http.StatusOK, "text/html")
	resp.GetWriter().Write([]byte(r))
}

Then use it in the action MyApp.Hello:

func (c *MyApp) Hello() revel.Result {
	return MyHtml("<html><body>Hello Result</body></html>")
}

 title: URL Routing layout: manual github: labels: - topic-routing godoc: - Router - Params

title: URL Routing
layout: manual
github:
labels:
- topic-routing
godoc:
- Router
- Params

URL’s and routes are defined in the conf/routes file and have three columns as example below:

[METHOD] [URL Pattern] [Controller.Method]
GET / MySite.Welcome

conf example

Higher priority routes first

module:jobs # Importing jobs includes all the routes from the module

main routes
GET / App.Home # A simple path

GET /contact App.Contact # contact page
#GET /contact/ App.Contact # unnecessary as (optional trailing slash is above)

GET /login App.Login

GET /hotels/ Hotels.Index # Match /hotels and /hotels/
GET /hotels/:id Hotels.Show # Extract a URI argument
WS /hotels/:id/feed Hotels.Feed # WebSockets.
POST /hotels/:id/:method Hotels.:method # Automatically route some methods.

PURGE /purge/:key Cache.Purge # Cache

WebDAV extends the set of standard HTTP verbs and headers allowed for request methods.
PROPFIND /webdav/:key WebDav.PropFind # WebDav
PROPPATCH /webdav/:key WebDav.PropPatch # WebDav
MKCOL /webdav/:key WebDav.MkCol # WebDav
COPY /webdav/:key WebDav.Copy # WebDav
MOVE /webdav/:key WebDav.Mode # WebDav
LOCK /webdav/:key WebDav.Lock # WebDav
UNLOCK /webdav/:key WebDav.UnLock # WebDav

Static files. Map /app/public resources under /public/...
GET /public/*filepath Static.Serve("public")

Developer Stuff
Prefix all routes in the testrunner module with /debug/
* /debug/ module:testrunner

Finally
Catch all and Automatic URL generation
* /:controller/:method :controller.:method

Let’s go through the lines one at a time and by the end, we’ll see how to
accomplish reverse routing i.e generating the URL to invoke a particular action.

A Fixed Path

GET /login App.Login
GET /about App.About

The routes above use an ‘exact match’ of HTTP method and path and invoke the Login and About
method on the App controller.

Trailing slashes/

GET /hotels/ Hotels.Index

	This route invokes Hotels.Index for both /hotels and /hotels/

	The reverse route to Hotels.Index will include the trailing slash/

Trailing slashes should not be used to differentiate between actions. The
simple path /login will be matched by a request to /login/.

URL :parameters

GET /hotels/:id Hotels.Show

	Segments of the path may be matched and extracted with a : prefix.

	The :id variable above will match anything except a slash. For example, /hotels/123 and
/hotels/abc would both be matched by the route above.

	Extracted parameters are available in both the

	Controller.Params [https://godoc.org/github.com/revel/revel#Params] map

	and via Method parameters.

For example:

func (c Hotels) Show(id int) revel.Result {
 ...
}

or

func (c Hotels) Show() revel.Result {
 var id string = c.Params.Get("id")
 ...
}

or

func (c Hotels) Show() revel.Result {
 var id int
 c.Params.Bind(&id, "id")
 ...
}

Star *parameters

GET /public/*filepath Static.Serve("public")

The starred parameter must be
the first element in the path, and match all remaining path elements.

For example, in the case above it will match any path beginning with /public/, and
its value will be the path substring that follows the * prefix.

Fixed Parameters

As also demonstrated in Static Serving below, routes may specify one or more
parameters to the method. For example:

GET /products/:id ShowList("PRODUCT")
GET /menus/:id ShowList("MENU")

The provided argument(s) are bound to a parameter name using their position. In
this case, the list type string would be bound to the name of the first method
parameter.

This is helpful in situations where:

	you have a couple similar methods

	you have methods that do the same thing, but operate in different modes

	you have methods that do the same thing, but operate on different data types

Auto Routing

POST /hotels/:id/:method Hotels.:method
* /:controller/:method :controller.:method

URL argument extraction can also be used to determine the invoked method.
Matching to controllers and methods is case insensitive.

The first example route line would effect the following routes:

/hotels/1/show => Hotels.Show
/hotels/2/details => Hotels.Details

Similarly, the second example may be used to access any action (Controller.Method) in the
application:

/app/login => App.Login
/users/list => Users.List

Since matching to controllers and methods are case insensitive, the following
routes would also work:

/APP/LOGIN => App.Login
/Users/List => Users.List

Using auto-routing as a catch-all (e.g. last route in the file) is useful for
quickly hooking up actions to non-vanity URLs, especially in conjunction with
the reverse router.

It is recommended that auto-routing be used for rapid development work, then
routes should be fully qualified to avoid exposing a method in a controller

[bookmark: StaticFiles]

Static Serving

GET /public/*filepath Static.Serve("public")
GET /favicon.ico Static.Serve("public","img/favicon.png")
GET /img/icon.png Static.Serve("public", "img/icon.png") << space causes error

For serving directories of static assets, Revel provides the static built in module,
which contains a single
Static [https://godoc.org/github.com/revel/modules/static/app/controllers#Static]
controller. Static.Serve [https://godoc.org/github.com/revel/modules/static/app/controllers#Static.Serve]
method takes two parameters:

	prefix (string) - A (relative or absolute) path to the asset root.

	filepath (string) - A relative path that specifies the requested file.

Important:For the two parameters version of Static.Serve, blank spaces are not allowed between
" and , due to how encoding/csv works.

 title: Server Engine layout: manual github: labels: - engine godoc: - ServerEngine

title: Server Engine
layout: manual
github:
labels:
- engine
godoc:
- ServerEngine

The Revel server engine gives the developer the freedom to implement the server however
they would like to choose. By default the Go HTTP engine is used, but you can also use
the fasthttp engine or the newrelic engine. Or configure an engine to meet your needs.
For example you can design an engine to listen on multiple IP addresses and serve out
your website that way.

Registration

To register revel.RegisterServerEngine(name string, loader func()revel.ServerEngine) to register
your server engine.

###App.conf

	server.engine Defaults to go. Specify the engine you wish to use.If you are using a module server engine you must declare the module in the modules section.

Server Engines

To implement your own custom server engine by implementing the
revel.ServerEngine.

type ServerEngine interface {
	// Initialize the server (non blocking)
	Init(init *EngineInit)
	// Starts the server. This will block until server is stopped
	Start()
	// Fires a new event to the server
	Event(event int, args interface{})
	// Returns the engine instance for specific calls
	Engine() interface{}
	// Returns the engine Name
	Name() string
	// Returns any stats
	Stats() map[string]interface{}
}
type EngineInit struct {
	Address,
	Network string
	Port int
	Callback func(ServerContext)
}

####Interface methods

	Init() Called when the server engine is created, it is called passing in a
revel.EngineInit object which contains the basic data needed to initialize
the engine and the Engine.Callback which is how the server conveys the
request/response traffic to revel. This is called before any revel.StartupHooks are called

	Start() Called as the final step. This call is not expected to return unless the
engine has shutdown

	Event() The event interface will receive events from the revel.InitEventHandler

	Name() is the name of the engine which will match the app.conf parameter

	Stats() is called to retrieve any statistics the engine may want to provide

See
revel.GOHttpServer for an example

####Server Context
The server context is the communication bridge between Revel and the revel.ServerEngine

	ServerContext interface {
		GetRequest() ServerRequest
		GetResponse() ServerResponse
	}

	// Callback ServerRequest type
	ServerRequest interface {
		GetRaw() interface{}
		Get(theType int) (interface{}, error)
		Set(theType int, theValue interface{}) bool
	}
	// Callback ServerResponse type
	ServerResponse interface {
		ServerRequest
	}
	// Callback WebSocket type
	ServerWebSocket interface {
		ServerResponse
		MessageSendJson(v interface{}) error
		MessageReceiveJson(v interface{}) error
	}

	// Expected response for HTTP_SERVER_HEADER type (if implemented)
	ServerHeader interface {
		SetCookie(cookie string)
		GetCookie(key string) (value ServerCookie, err error)
		Set(key string, value string)
		Add(key string, value string)
		Del(key string)
		Get(key string) (value []string)
		SetStatus(statusCode int)
	}

	// Expected response for FROM_HTTP_COOKIE type (if implemented)
	ServerCookie interface {
		GetValue() string
	}

	// Expected response for HTTP_MULTIPART_FORM
	ServerMultipartForm interface {
		GetFile() map[string][]*multipart.FileHeader
		GetValue() url.Values
		RemoveAll() error
	}
	StreamWriter interface {
		WriteStream(name string, contentlen int64, modtime time.Time, reader io.Reader) error
	}

As you can see the majority of communications are done through a Set/Get with a key.
The key determines what Revel is expecting for the the data.

const (
	/* Minimum Engine Type Values */
	_ = iota
	ENGINE_RESPONSE_STATUS
	ENGINE_WRITER
	ENGINE_PARAMETERS
	ENGINE_PATH
	ENGINE_REQUEST
	ENGINE_RESPONSE
)
const (
	/* HTTP Engine Type Values Starts at 1000 */
	HTTP_QUERY = ENGINE_PARAMETERS
	HTTP_PATH = ENGINE_PATH
	HTTP_BODY = iota + 1000
	HTTP_FORM = iota + 1000
	HTTP_MULTIPART_FORM = iota + 1000
	HTTP_METHOD = iota + 1000
	HTTP_REQUEST_URI = iota + 1000
	HTTP_REMOTE_ADDR = iota + 1000
	HTTP_HOST = iota + 1000
	HTTP_SERVER_HEADER = iota + 1000
	HTTP_STREAM_WRITER = iota + 1000
	HTTP_WRITER = ENGINE_WRITER
)

The minimum requirements for Revel to operate are the ENGINE constants, the HTTP
constants provide an enriched experience for the

 title: Session Engine layout: manual github: labels: - topic-Session godoc: - SessionEngine

title: Session Engine
layout: manual
github:
labels:
- topic-Session
godoc:
- SessionEngine

Revel allows for building and using custom session engines;
the process for building your own engine is as follows

Session Engine

A session engine must implement the SessionEngine [https://godoc.org/github.com/revel/revel#SessionEngine]
interface. To register a new engine in Revel :

	Define it as a module to be loaded in the app.conf.

	In the init() function of the engine, register the engine in revel by calling:revel.RegisterSessionEngine(f func() SessionEngine, name string)

	Only one session engine may be active at a time you can specify the active session engine in
the app.conf
session.engine it defaults to revel-cookie, which is the standard engine.

revel.GoEngine [https://godoc.org/github.com/revel/revel#SessionCookieEngine] for some examples

Session Cookie Engine

The session cookie engine has the following limitations

	The size limit is 4kb.

	All data must be serialized to a string for storage.

	All data may be viewed by the user as it is not encrypted, but it is safe from modification.

The default lifetime of the session cookie is the browser lifetime. This
can be overriden to a specific amount of time by setting the session.expires
option in conf/app.conf. The format is that of
time.ParseDuration [http://golang.org/pkg/time/#ParseDuration].

Helper Classes

The revel.Session [https://godoc.org/github.com/revel/revel/session#Session] structure helps with the
encoding and decoding of session objects. It has a couple of helper functions to assist
with this. revel.Session.Serialize() [https://godoc.org/github.com/revel/revel/session#Session.Serialize]
this converts the data to a map[string]string by serializing all non string objects to JSON
There is a corresponding revel.Session.Load() [https://godoc.org/github.com/revel/revel/session#Session.Load]
function which takes a map[string]string and loads it into this object.

 title: Session / Flash Scopes layout: manual github: labels: - topic-session godoc: - Session - Flash

title: Session / Flash Scopes
layout: manual
github:
labels:
- topic-session
godoc:
- Session
- Flash

Revel provides Flash cookie based method to set temporary transient data. It also
provides Session backed data to provide persistent user state data.

// A signed cookie, and thus limited to 4kb in size.
// Restriction: Keys may not have a colon in them.
type Session map[string]string

// Flash represents a cookie that gets overwritten on each request.
// It allows data to be stored across one page at a time.
// This is commonly used to implement success or error messages.
// e.g. the Post/Redirect/Get pattern: http://en.wikipedia.org/wiki/Post/Redirect/Get
type Flash struct {
	Data, Out map[string]string
}

NOTE: To set your own cookie, use Controller.SetCookie() [https://godoc.org/github.com/revel/revel#Controller.SetCookie]

func (c MyController) MyMethod() revel.Result {
 new_cookie := &http.Cookie{Name: "foo", Value: "Bar"}
 c.SetCookie(new_cookie)
 return c.Render()
}

[bookmark: session]

Session

revel.Session [https://godoc.org/github.com/revel/revel/session#Session] is a
map[string]interface{}. By default you can still interact with string data as if it was
a map[string]string. If you store objects in the session they must be able to convert to
JSON and you must use the revel.Session.Get() [https://godoc.org/github.com/revel/revel/session#Session.Get]
function to extract the data. The Session.Get call will automatically inflate the object
if it exists in the map. The inflated result will be a map[string]interface{}. You can
also do a revel.Session.GetInto() [https://godoc.org/github.com/revel/revel/session#Session.GetInto]
passing a reference to the object you want inflated. and it will populate that object if
it exists. If the session object does not exist, a SESSION_VALUE_NOT_FOUND [https://godoc.org/github.com/revel/revel/session#pkg-variables]
error is returned.

The default session engine is the revel-cookie engine

func (c MyController) getUser(username string) models.User {
	user = &models.User{}
	_, err := c.Session.GetInto("fulluser", user, false)
	if err==nil && user.Username == username {
		return user
	}
	// more
	
}

func (c MyController) MyMethod() revel.Result {

 c.Session["foo"] = "bar"
 c.Session["bar"] = 1
 delete(c.Session, "abc") // Removed item from session
 return c.Render()
}

Flash

The Flash provides single-use string storage. It is useful for implementing
the Post/Redirect/Get pattern [http://en.wikipedia.org/wiki/Post/Redirect/Get],
or for transient “Operation Successful!” or “Operation Failed!” messages.

Here’s an example of that pattern:

// Show the Settings form
func (c App) ShowSettings() revel.Result {
	return c.Render()
}

// Process a post
func (c App) SaveSettings(setting string) revel.Result {
 // Make sure `setting` is provided and not empty
 c.Validation.Required(setting)
 if c.Validation.HasErrors() {
 // Sets the flash parameter `error` which will be sent by a flash cookie
 c.Flash.Error("Settings invalid!")
 // Keep the validation error from above by setting a flash cookie
 c.Validation.Keep()
 // Copies all given parameters (URL, Form, Multipart) to the flash cookie
 c.FlashParams()
 return c.Redirect(App.ShowSettings)
 }
 saveSetting(setting)
 // Sets the flash cookie to contain a success string
 c.Flash.Success("Settings saved!")
 return c.Redirect(App.ShowSettings)
}

Walking through this example:

	User fetches the settings page.

	User posts a setting (POST)

	Application processes the request, saves an error or success message to the flash, and redirects the user to the settings page (REDIRECT)

	User fetches the settings page, whose template shows the flashed message. (GET)

It uses two convenience functions:

	Flash.Success(message string) is an abbreviation of Flash.Out["success"] = message

	Flash.Error(message string) is an abbreviation of Flash.Out["error"] = message

Flash messages may be referenced by key in templates. For example, to access
the success and error messages set by the convenience functions, use these
expressions:

{% capture ex %}{% raw %}
{{.flash.success}}
{{.flash.error}}
{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}

Here is a second scenario where you want the flash variables returned without using a
redirect

func (c Controller) Submit(Input UserName) revel.Result {
 Input.Validate(c.Validation);
 if c.Validation.HasErrors() {

 data := map[string]string{}
 for key, vals := range c.Params.Values {
 data[key] = strings.Join(vals, ",")
 }
 c.RenderArgs["flash"] = data

 // Display input page
 return c.RenderTemplate("test.html")
 }
 ...
 }

 title: Revel Hooks layout: manual group: Reference

title: Revel Hooks
layout: manual
group: Reference

Revel Application Start / Stop Hooks

Revel calls a set of functions, that users can register functions for,
on startup of Revel and shutdown of Revel. For example the module/db package uses
the OnAppStart to open a database connection (and registers a OnAppStop function
to close a database connection). On registration you can optionally pass in a priority level as
the second argument. The lowest priority gets activated first.

You can register your own actions in the following way

	revel.OnAppStop(func() {
		revel.RevelLog.Info("Opening the database (from module)")
		if err := Db.Close(); err != nil {
			revel.AppLog.Error("Failed to close the database", "error", err)
		}
	})

Revel Module Hooks

Modules have an initialization hook that gets called after the module is loaded in Revel.
This callback passes the revel.Module object to the module so that you could perform some
additional processing on startup. The revel.Module contains a logger.Multilogger which is
specifically initialized for the module. It is recommended to use that when logging in
modules.

func init() {
	revel.RegisterModuleInit(func(module *revel.Module) {
		moduleLogger = module.Log
		moduleLogger.Debug("Assigned Logger")
	})
}

Revel Manual Shutdown

You can manually stop your Revel application by calling revel.StopServer(nil).
This allows you to gracefully take down a server instance when needed. You can also
trigger a shutdown by killing the process using the interrupt level (CTRL+C or syscall.SIGINT).
Once triggered the server engine will stop processing requests and run the OnAppStop hooks.
This function call will block until the server is halted.

Revel Event Hooks

The startup of Revel is event driven and as a developer you can tie into this process
by registration of an event handler object matching by passing a function of revel.EventHandler
to revel.AddInitEventHandler like below

	revel.AddInitEventHandler(func(event revel.Event, value interface{}) (returnType revel.EventResponse) {
		if event == revel.REVEL_BEFORE_MODULES_LOADED {
		 // Do something
		}

		return 0
	})

Developers can then perform specific actions based off the core Revel startup process.

Important events are triggered in the same process thread, not on a separate channel,
if you block an event Revel will not startup.

Normally the process flow goes as follows

	REVEL_BEFORE_MODULES_LOADED

	REVEL_AFTER_MODULES_LOADED

	ENGINE_BEFORE_INITIALIZED

	TEMPLATE_REFRESH_REQUESTED (May have multiple refreshes depending on file monitoring)

	TEMPLATE_REFRESH_COMPLETED

	(Triggered During OnAppStart)

	ROUTE_REFRESH_REQUESTED (May have multiple refreshes depending on file monitoring)

	ROUTE_REFRESH_COMPLETED

	ENGINE_STARTED

Shutdown can be triggered by revel.StopServer() which triggers a ENGINE_SHUTDOWN_REQUEST the
server is not shutdown until you receive a ENGINE_SHUTDOWN event

In the case where Revel does not start the following event is triggered

	REVEL_FAILURE

 title: Template Engine layout: manual github: labels: - topic-template godoc: - TemplateEngine

title: Template Engine
layout: manual
github:
labels:
- topic-template
godoc:
- TemplateEngine

Revel allows for building and using custom template engines; the process for building your own engine is as follows

Building a new Template Engine

A template engine must implement the TemplateEngine [https://godoc.org/github.com/revel/revel#TemplateEngine]
interface. To register a new engine in Revel :

	Define it as a module to be loaded in the app.conf.

	In the init() function of the engine, register the engine in revel by calling:RegisterTemplateLoader(key string, loader func(loader *TemplateLoader) (TemplateEngine, error)) (err error)

	Specify the template engines to be used by setting the
template.engines configuration option to the names of the engine to be used (a comma delimited list).

Template Engine Interface

	Event(event int, arg interface{}) [https://godoc.org/github.com/revel/revel#TemplateEngine]
Called when a revel.TemplateRefresh or revel.TemplateRefreshComplete occurs. This allows
the engine to do a pre-initialize, before the templates are loaded, and could also do some
form of memory release once the templates are loaded.

	Handles(templateView *TemplateView) bool [https://godoc.org/github.com/revel/revel#TemplateEngine]
Called for every view found, revel creates a Trevel.TemplateView [https://godoc.org/github.com/revel/revel#TemplateView]
instance and calls every engine to see if they are the one to be used to parse the view

	ParseAndAdd(basePath *TemplateView) error [https://godoc.org/github.com/revel/revel#TemplateEngine]
Called on application startup, or when templates have been changed.

	Name() string [https://godoc.org/github.com/revel/revel#TemplateEngine]
Called to fetch the name of the template engine.

	Lookup(templateName string) revel.Template [https://godoc.org/github.com/revel/revel#TemplateEngine]
Called to fetch the template, see below for what the template interface implements.

There is a helper struct called revel.EngineHandles [https://godoc.org/github.com/revel/revel#TemplateEngineHelper]
which can be used to examine the view to check to see if it contains a shebang or a file extenstion that matches the name of the engine
, see
revel.GoEngine [https://godoc.org/github.com/revel/revel#GoEngine] for some examples

Template Interface

	Name() string Name of template

	Content() []string The content of the template as a string (Used in error handling).

	Render(wr io.Writer, context interface{}) error Called by the server to render the template out the io.Writer, context contains the view args to be passed to the template.

	Location() string // The full path to the file on the disk.

There is a helper struct called revel.TemplateView, which implements the Location function,
see
revel.GoEngine [https://godoc.org/github.com/revel/revel#GoEngine] for some examples

 title: Go Template Engine layout: manual github: labels: - topic-template godoc: - GoEngine

title: Go Template Engine
layout: manual
github:
labels:
- topic-template
godoc:
- GoEngine

Go Template Engine

The Go template engine is the default one used by Revel. It requires no application
settings.

The Go template engine parser strips html comments from the content (see here).
The reasoning behind this is explained here. Use a custom function to protect your inline comment to resolve this

Template Delimiters

Revel provides configurable Template Delimiters via app.conf.

Including Other Templates

Go Templates allow you to compose templates by inclusion. For example:

{% capture ex %}{% raw %}
{{template “header.html” .}}
{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}

Note: Paths are relative to app/views
[bookmark: functions]

Go Template Functions

These built-in functions are only applicable to the Go template engine, other template
engines will need to supply there own implementation.

	Go provides a few native template functions [http://golang.org/pkg/html/template/#pkg-index].

	Revel adds to those. Read the documentation below or check out the source code [https://godoc.org/github.com/revel/revel#pkg-variables].

	append

	checkbox

	date, datetime, timeago

	even

	field

	i18ntemplate

	msg

	nl2br

	option

	pad

	pluralize

	radio

	raw

	set

	url

	Custom Functions

[bookmark: append]

append

Add a variable to an array, or create an array; in the given context.

{% capture ex %}{% raw %}
{{append . “moreScripts” “js/jquery-ui-1.7.2.custom.min.js”}}

{{range .moreStyles}}

{{end}}
{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}

 title: Templates layout: manual github: labels: - topic-template - topic-controller godoc: - Template

title: Templates
layout: manual
github:
labels:
- topic-template
- topic-controller
godoc:
- Template

Revel by default uses Go’s built in html/template [http://golang.org/pkg/html/template/]
package. For information regarding this template engine see here

To add a template engine you must include the module. For example

module.1.pongo2=github.com/revel/modules/template-engine/pongo2
module.2.ace=github.com/revel/modules/template-engine/ace
module.3.static=github.com/revel/modules/static
module.4.jobs=github.com/revel/modules/jobs

This specifies that the pongo2 and ace engines are added to the
main template parser, the order of the way the modules are loaded
is important as well, since that controls what view overrides another.
The first view found is always the view used, all others will be suppressed.
The two part key allows the modules to be sorted, after sorting the
sort key is removed and in the routes table the route is referenced
normally.

The configuration file also needs an list of engines to be used on the views
this is where template.engines key in the configuration file comes into
play like

template.engines=pongo2,ace,go

The three template engines pongo2,ace,go will be used when rendering
templates.

How Revel Picks the Right Template Engine

The template-engine has a method called Handles, which accepts
the basic template information (path, and content). The engine then
can return true or false if it can parse the file or not. How it makes
this choice is up to the parser. Revel has a builtin function called
revel.EngineHandles, which can be used to look for a
shebang at the top of the template to see which template engine it belongs to,
it also looks for a secondary extension like foo.ace.html which would be
identified as an ace template. Finally it could try to parse the code
and if that passes it can register itself for that.

File Path Case Sensitivity

In the past we have maintained an all lower case template path, this
works in most cases but lead to some confusion. For example if you include
a file within your template you must type out the file and file path
in lower case. Now you can specify if
the case sensitivity is on or off. The case sensitivity can be turned on
by setting an app configuration option per template engine like
go.tempate.path=case will turn on case sensitivity on the go
template engine (by default it is off).

Directory Scanning

Directories are scanned for templates in the following order:

	The application app/views/ directory and subdirectories.

	revel core templates/ directory.

	Otherwise a 500 error as template not found (but in dev mode shows debug info)

For example, given a controller/method Hello.World(), Revel will:

	look for a template file named views/Hello/World.html.

	and if not found, show views/errors/500.html

	and if that’s not found, use Revel’s built-in templates/errors/500.html

Template file names are case insensitive so the following will be treated as the same:

	views/hello/world.html

	views/HeLlO/wOrLd.HtMl

However, on **nix based file systems (and for example with index.html and IndeX.html), duplicate cased file names are
to be avoided as it is unpredictable which one will be considered.

Revel provides templates for error pages (see code [https://github.com/revel/revel/tree/master/templates/errors]) and
these display the developer friendly compilation errors in dev mode. An
application may override them by creating a template of the equivalent template name, e.g. app/views/errors/404.html.

Render Context

Revel executes the template using the ViewArgs [https://godoc.org/github.com/revel/revel#Controller.ViewArgs] data map[string]interface{}. Aside from
application-provided data, Revel provides the following entries:

	errors - the map returned by
Validation.ErrorMap [https://godoc.org/github.com/revel/revel#Validation.ErrorMap] (see validation)

	flash - the data flashed by the previous request.

 title: Revel tool layout: manual

title: Revel tool
layout: manual

Revel Tool

The command line tool revel is similar to the go generate tool. It’s purpose is to
simplify the development process of a web application by automating some of the
repetitive steps. When used it
reads the source code (and configuration) of your project and generates the source
files for the routes,
generates a main entry point for the application,
downloads any missing packages (using deps if vendor folder is found)
and can start your application running in a proxy.

You can optionally increase the verbosity of this process by adding a -v or --debug
to any of the commands listed below

The Revel command package contains no dependencies on the Revel webframework. This allows
the Revel team to make changes to either package individually without affecting your build
environment.

$ revel
Usage:
 revel [OPTIONS] <command>

Application Options:
 -v, --debug If set the logger is set to verbose
 --historic-run-mode If set the runmode is passed a string not json
 --historic-build-mode If set the code is scanned using the original parsers, not the go.1.11+
 -X, --build-flags= These flags will be used when building the application. May be specified multiple times, only applicable for Build, Run, Package, Test commands
 --gomod-flags= These flags will execute go mod commands for each flag, this happens during the build process

Available commands:
 build
 clean
 new
 package
 run
 test
 version

You can optionally increase the verbosity of this process by adding a -v or --debug
to any of the commands listed below

The Revel command package contains no dependencies on the Revel webframework. This allows
the Revel team to make changes to either package individually without affecting your build
environment.

Application Options

These are global options available with any command.

	-v, –debug : Turns on the logger to be verbose in logging, may offer up clues as to what is not working

	–historic-run-mode : Passes the run mode as a string, not a json object. Not compatible with project using go.mod

	– historic-build-mode : Parses the source files using go/build library. Not recommended with project using go.mod

	-X –build-flags= Go build flags to be used when building the app, may be specified multiple times for multiple flags

	–gomod-flags= commands to be run using go mod <your command here> spaces will be assumes to be split arguments example below
handy for modifying the go.mod file before it is used for a build.

 revel build --gomod-flags "edit -replace=github.com/revel/revel=github.com/revel/revel@develop" -a my_gocode -t build/my_gocode

[bookmark: version]

Version

	Displays the Revel Framework and Go version,
if you want to view the version for a particular project you need to pass in the application path.
All version management is maintained in the go.mod file which is located in the root of your project. You can
modify that file using the go mod edit commands [https://golang.org/cmd/go/#hdr-Edit_go_mod_from_tools_or_scripts]
or directly with a text editor. You can also pass in commands that Revel will run before building a project like:

revel build --gomod-flags "edit -replace=github.com/revel/revel=github.com/revel/revel@develop" -a my_gocode -t build/my_gocode

$ revel version -h
Usage:
 revel [OPTIONS] version [version-OPTIONS]

Help Options:
 -h, --help Show this help message

[version command options]
 -a, --application-path= Path to application folder

New

revel new -h
Usage:
 revel [OPTIONS] new [new-OPTIONS]

Help Options:
 -h, --help Show this help message

[new command options]
 -a, --application-path= Path to application folder
 -s, --skeleton= Path to skeleton folder (Must exist on GO PATH)
 -p, --package= The package name, this becomes the repfix to the app name, if defined vendored is set to true
 --no-vendor True if project should not be configured with a go.mod, this requires you to have the project on the GOPATH, this is only compatible with go
 versions v1.12 or older
 -r, --run True if you want to run the application right away

Creates the directory structure and copy files from a skeleton to initialize an application quickly.
Since version 1 this will initialize a go.mod file in the project folder and the project is not required to be in a GOPATH

	Copies files from the skeleton/ [https://github.com/revel/skeletons] package

	The location of the project is dependent on a few variables

	If the import path is an absolute path the location will be there

	If the path is a relative path the current working directory is checked

	Skeleton is an optional argument, the default skeleton is in
https://github.com/revel/skeletons/tree/master/basic/bootstrap4 but you can specify a different
git repository by entering in the path like below.

./revel new test/me2.com/myproject git://github.com/revel/skeletons:basic/bootstrap4
Revel executing: create a skeleton Revel application
Your application has been created in:
 /home/me/mygopath/src/test/me2.com/myproject

You can run it with:
 revel run -a test/me2.com/myproject

Or you can specify a local filesystem path by

revel new github.com/me/myapp/ -s path/to/my/skeleton

Supported Schemes for the skeleton path

	file:// (or none), expects to find the skeleton on the path specified

	http:// Git repository, will access like git clone http://….

	https:// Git repository, will access like git clone https://….

	git:// Git repository, will access like git clone git://….

	You can create a new app and run using the -r by doing a
revel new -a github.com/me/myapp -r

revel new -a bitbucket.org/myorg/my-app

[bookmark: run]

Run

$ revel run -h
Usage:
 revel [OPTIONS] run [run-OPTIONS]

[run command options]
 -a, --application-path= Path to application folder
 -m, --run-mode= The mode to run the application in
 -p, --port= The port to listen (default: -1)
 -n, --no-proxy True if proxy server should not be started. This will only update the main and routes files on change

Example usage

// run in dev mode
$ revel run -a github.com/mycorp/mega-app

// run in prod mode on port 9999
$ revel run -a github.com/mycorp/mega-app -m prod -p 9999

Run creates a proxy container to run your application in, it also can watch your file for changes
and if any changes are made it can redeploy the application (if Go source files are changed), or
recompile the templates. It also downloads all necessary libraries

	Creates main and routes Go source files and compiles the project for you

	Runs a Proxy which will display any compile errors or template errors

	Watches files for any modifications, relaunches application if changes detected

	You can turn off the proxy with the --no-proxy flag if you want the process to only
update the go files.

	Interesting feature running on port 0 will start the proxy listener on a random open port so
you don’t need to keep track of what ports are being used

 revel run -a github.org/mememe/mega-app -m prod

[bookmark: build]

Build

revel build -h
Usage:
 revel [OPTIONS] build [build-OPTIONS]

[build command options]
 -a, --application-path= Path to application folder
 -t, --target-path= Path to target folder. Folder will be completely deleted if it exists
 -m, --run-mode= The mode to run the application in
 -s, --include-source Copy the source code as well

	Build the Revel web application named by the given import path.

	This allows it to be deployed and run on a machine that lacks a Go installation.

	(v0.20) By default the go source tree is no longer added to the build results.
instead only the folders specified in the app.conf `` are included (recursively) in the package.
You can override this behavior by including the --include-source to the command

	By specifying the --run-mode you can further reduce the size of the packaged module since
this will restrict the number of modules included in the package to be deployed

	The tool ignores any directory beginning with a period and only includes folders
in conf,public,app/views. this is configured by package.folders in the app.conf

 revel build -a github.org/mememe/mega-app /path/to/deploy/mega-app -m prod

 WARNING: The target path will be completely deleted, if it already exists!
[bookmark: package]

Package

revel package -h
Usage:
 revel [OPTIONS] package [package-OPTIONS]

[package command options]
 -a, --application-path= Path to application folder
 -t, --target-path= Full path and filename of target package to deploy
 -m, --run-mode= The mode to run the application in
 -s, --include-source Copy the source code as well

	Build the Revel web application named by the given import path.

	This allows it to be deployed and run on a machine that lacks a Go installation.

	(v0.20) By default the go source tree is no longer added to the build results.
instead only the folders specified in the app.conf `` are included (recursively) in the package.
You can override this behavior by including the --include-source to the command

	By specifying the --run-mode you can further reduce the size of the packaged module since
this will restrict the number of modules included in the package to be deployed

	The tool ignores any directory beginning with a period and only includes folders
in conf,public,app/views. this is configured by package.folders in the app.conf

 revel package -a github.com/revel/revel/examples/chat -m prod
 > Your archive is ready: chat.tar.gz

 WARNING: The target path will be completely deleted, if it already exists!
[bookmark: clean]

Clean

revel clean -h
Usage:
 revel [OPTIONS] clean [clean-OPTIONS]

[clean command options]
 -a, --application-path= Path to application folder

	Clean the Revel web application named by the given import path

	Deletes the app/tmp directory.

	Deletes the app/routes directory.

 revel clean github.com/revel/examples/booking

[bookmark: test]

Test

revel test -h
Usage:
 revel [OPTIONS] test [test-OPTIONS]

[test command options]
 -a, --application-path= Path to application folder
 -m, --run-mode= The mode to run the application in
 -f, --suite-function= The suite.function

	Run all tests for the Revel app named by the given import path.

 revel test -a github.com/revel/examples/booking -m dev

 title: Validation layout: manual github: labels: - topic-controller godoc: - Validation - Validator - ValidationResult - ValidationError

title: Validation
layout: manual
github:
labels:
- topic-controller
godoc:
- Validation
- Validator
- ValidationResult
- ValidationError

Revel provides built-in functionality for validating parameters. The main parts are:

	A Validation [https://godoc.org/github.com/revel/revel#Validation] context collects and manages validation errors (keys and messages).

	Helper functions that checks data and put errors into the context.

	A template function that gets error messages from the Validation [https://godoc.org/github.com/revel/revel#Validation] context by key.

See the validation sample app for some
in-depth examples.

Inline Error Messages

This example demonstrates field validation with inline error messages.

func (c MyApp) SaveUser(username string) revel.Result {
	// Username (required) must be between 4 and 15 letters (inclusive).
	c.Validation.Required(username)
	c.Validation.MaxSize(username, 15)
	c.Validation.MinSize(username, 4)
	c.Validation.Match(username, regexp.MustCompile("^\\w*$"))

	if c.Validation.HasErrors() {
		// Store the validation errors in the flash context and redirect.
		c.Validation.Keep()
		c.FlashParams()
		return c.Redirect(Hotels.Settings)
	}

	// All the data checked out!
	...
}

In this second implementation we have the model validating the object, note

v.MaxSize(username, 15).MessageKey("Name must be between 4-15 characters long")

vs

v.MinSize(username, 4).Message("Name must be between 4-15 characters long")

The MessageKey function tells Revel for the error message use that message key
(ie lookup the message in the i18n translation)

The Message function tells Revel for the error message use that message

func (c MyApp) SaveUser(user User) revel.Result {
 user.Validate(c.Validation)

	if c.Validation.HasErrors() {
		// Store the validation errors in the flash context and redirect.
		c.Validation.Keep()
		c.FlashParams()
		return c.Redirect(Hotels.Settings)
	}

	// All the data checked out!
	...
}
...
func (u *User) Validate(v *revel.Validation) {
	v.Required(u.Name)
	v.MaxSize(username, 15).MessageKey("Name must be between 4-15 characters long")
	v.MinSize(username, 4).Message("Name must be between 4-15 characters long")
	v.Match(username, regexp.MustCompile("^\\w*$"))
 return
}

Step by step:

	Evaluate four different conditions on username (Required [https://godoc.org/github.com/revel/revel#Validation.Required],
MinSize [https://godoc.org/github.com/revel/revel#Validation.MinSize],
MaxSize [https://godoc.org/github.com/revel/revel#Validation.MaxSize], Match [https://godoc.org/github.com/revel/revel#Validation.Match]).

	Each evaluation returns a ValidationResult [https://godoc.org/github.com/revel/revel#ValidationResult]. Failed ValidationResult’s are stored in the Validation context.

	As part of building an app, Revel records the name of the variable being
validated, and uses that as the default key in the validation context (to be looked up later).

	Validation.HasErrors() [https://godoc.org/github.com/revel/revel#Validation.HasErrors] returns true if the the context is non-empty.

	Validation.Keep() [https://godoc.org/github.com/revel/revel#Validation.Keep] tells Revel to serialize the ValidationErrors to the Flash cookie.

	Revel returns a redirect to the Hotels.Settings action.

The Hotels.Settings action renders a template:

{% capture ex %}{% raw %}

{{/* app/views/Hotels/Settings.html */}}
…
{{if .errors}}Please fix errors marked below!{{end}}
…

 Username:

 {{.errors.username.Message}}

{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}

It does three things:

	Checks the errors map for the username key to see if that field had an error.

	Prefills the input with the flashed username param value.

	Shows the error message next to the field. (We didn’t specify any error message, but each validation function provides one by default.)

Note: The field template helper function makes writing templates that use
the validation error framework a little more convenient.

Top Error Messages

The template can be simplified if error messages are collected in a single place
(e.g. a big red box at the top of the screen.)

There are only two differences from the previous example:

	We specify a Message instead of a Key on the ValidationError

	We print all messages at the top of the form.

Here’s the code.

func (c MyApp) SaveUser(username string) revel.Result {
	// Username (required) must be between 4 and 15 letters (inclusive).
	c.Validation.Required(username).Message("Please enter a username")
	c.Validation.MaxSize(username, 15).Message("Username must be at most 15 characters long")
	c.Validation.MinSize(username, 4).Message("Username must be at least 4 characters long")
	c.Validation.Match(username, regexp.MustCompile("^\\w*$")).Message("Username must be all letters")

	if c.Validation.HasErrors() {
		// Store the validation errors in the flash context and redirect.
		c.Validation.Keep()
		c.FlashParams()
		return c.Redirect(Hotels.Settings)
	}

	// All the data checked out!
	...
}

.. and the template:

{% capture ex %}{% raw %}

{{/* app/views/Hotels/Settings.html */}}
…
{{if .errors}}

 {{range .errors}}
 	 {{.Message}}

 {{end}}

{{end}}
...
{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}

 title: Versioning layout: manual

title: Versioning
layout: manual

Versioning

Go has released a new dependency tool called go mod, it creates a file called go.mod and eliminates the need for
GOPATH dependencies in Go. This simplifies the build process and bring a single point of contact to control versions.
Revel has embraced this idea and added a new flag called --gomod-flags which allows you to interact directly with the go.mod
before the project is built/packaged/run or tested. For ideas on usage of the go mod here are some commands
commands [https://golang.org/cmd/go/#hdr-Edit_go_mod_from_tools_or_scripts]

An example to change github.com/revel/revel to use the develop branch

 revel build --gomod-flags "edit -replace=github.com/revel/revel=github.com/revel/revel@develop" -a my_gocode -t build/my_gocode

 title: Websockets layout: manual

title: Websockets
layout: manual

Revel provides support for Websockets [http://en.wikipedia.org/wiki/WebSocket].

To handle a Websocket connection:

	Add a route using the WS method.

	Add an action that accepts a revel.ServerWebSocket parameter.

See the example chat application

Simple Websocket Example

Add this to the conf/routes file:

WS /app/feed Application.Feed

Then write an action like this:

import "github.com/revel/revel"

func (c App) Feed(user string, ws revel.ServerWebSocket) revel.Result {
	...
}

 title: Modules Overview layout: modules redirect_from: “/manual/modules.html”

title: Modules Overview
layout: modules
redirect_from: “/manual/modules.html”

Modules are packages that can be plugged into an application. They allow sharing of controllers, views, assets, and
other code between multiple Revel applications or from third-party sources.

A module should have the same layout as a Revel application’s layout. The “hosting” application will merge it in as follows:

	Any templates in module/app/views will be added to the Template Loader search path

	Any controllers in module/app/controllers will be treated as if they were in your application

	The assets are made available, via a route action of the form Static.ServeModule("modulename","public")

	Routes can be included in your application with the route line of module:modulename - see routing

Revel comes with some built in modules such as testing and jobs.

 Modules Repository

Enabling a module

In order to add a module to your app, add a line to conf/app.conf:
{% highlight ini %}
module.mymodulename = go/import/path/to/module
{% endhighlight %}

You can add an ordering method by insert a sortable string in between the
word module and the name of the module like the following. This allows you to specify
which order the views should be loaded, so your application will always be the first,
then the order of the modules and finally the default views in Revel.
{% highlight ini %}
module.01.mymodulename = go/import/path/to/module
module.02.mymodulename2 = go/import/path/to/module2
{% endhighlight %}

An empty import path disables the module:
{% highlight ini %}
module.mymodulename =
{% endhighlight %}

For example, to enable the test runner module:
{% highlight ini %}
module.testrunner = github.com/revel/modules/testrunner
{% endhighlight %}

Routing a module

	See the modules config in app/routes

Building a module

Best Practices

It’s a good idea to make sure all your views are in their own namespace
so that they will not conflict with other applications that your module is
imported into. If you have a module called Reservation, it would be a good
idea to have your view path look like app/views/Reservation/Controller/Action.html
. This means that your controller needs to call RenderTemplate
instead of Render so that the correct view path is chosen.

Module Initialization

The revel.RegisterModuleInit(func(*revel.Module)) can be for a module to be called immediately after all the modules
are loaded. The revel.Module contained in the callback is the one assigned for that module. This can
be used for a variety of purposes.

An example of a purpose would be to retrieve the logger initialized for
the module like the following

var moduleLogger logger.MultiLogger

func init() {
	revel.RegisterModuleInit(func(module *revel.Module){
		moduleLogger = module.Log
		moduleLogger.Debug("Assigned Logger")
	})
}

The callback registered in the revel.RegisterModuleInit is called before the revel.OnAppStart
functions are.

 title: Schedules Jobs layout: modules github: labels: - topic-jobs - topic-runtime

title: Schedules Jobs
layout: modules
github:
labels:
- topic-jobs
- topic-runtime

The Revel Jobs [https://godoc.org/github.com/revel/modules/jobs/app/jobs] module
enables performing tasks asynchronously, outside of the request flow.

A job is either:

	Recurring, e.g. generating a daily report

	One-off, e.g. sending emails, updating a ledger, or creating a cache

Config

The Jobs [https://godoc.org/github.com/revel/modules/jobs/app/jobs] module
is optional not enabled by default.

To activate add module.jobs to the app.conf file:

module.jobs = github.com/revel/modules/jobs

Additionally, in order to access the job monitoring page, you will need to add the module’s routes to your app’s conf/routes:

module:jobs

Options

There are some configuration settings that place some limitations
job and its run, explained below with default values:

	jobs.pool = 10 - The number of jobs allowed to run simultaneously/concurrently

	jobs.selfconcurrent = false - Allow a job to run only if previous instances are done

	jobs.acceptproxyaddress = false - Accept X-Forwarded-For header value (which is spoofable) to allow or deny status page access

Implementing Jobs

To create a Job, implement the cron.Job [https://github.com/revel/cron/blob/master/cron.go] interface. The
Job [https://godoc.org/github.com/revel/modules/jobs/app/jobs#Job] interface has the following signature:

{% highlight go %}
type Job interface {
Run()
}
{% endhighlight %}

For example:

{% highlight go %}
type MyJob struct {}

func (j MyJob) Run() {
// Do something
}
{% endhighlight %}

Startup Jobs

To run a task on application startup, use
revel.OnAppStart() [https://godoc.org/github.com/revel/revel#OnAppStart] to register a function.
Revel runs these tasks serially, before starting the server. Note that this
functionality does not actually use the jobs module, but it can be used to
submit a job for execution that doesn’t block server startup.

{% highlight go %}
func init() {
revel.OnAppStart(func() { jobs.Now(populateCache{}) })
}
{% endhighlight %}

[bookmark: RecurringJobs]

Recurring Jobs

Jobs may be scheduled to run on any schedule. There are two options for expressing the schedule:

	A cron specification

	A fixed interval

Revel uses the cron [https://godoc.org/github.com/revel/cron] library to parse the
schedule and run the jobs. The library provides a detailed description of the format accepted.

It’s recommended that Jobs are registered using the
revel.OnAppStart() [https://godoc.org/github.com/revel/revel#OnAppStart] hook, but they may be
registered any time after OnAppStart.

Here are some examples:

{% highlight go %}
import (
“time”

"github.com/revel/revel"
"github.com/revel/modules/jobs/app/jobs"

)

type ReminderEmails struct {
// Filtered
}

func (e ReminderEmails) Run() {
// Queries the DB
// Sends some email
}

func init() {
revel.OnAppStart(func() {
jobs.Schedule(”0 0 0 * * ?”, ReminderEmails{})
jobs.Schedule(”@midnight”, ReminderEmails{})
jobs.Schedule(”@every 24h”, ReminderEmails{})
jobs.Every(24 * time.Hour, ReminderEmails{})
})
}
{% endhighlight %}

[bookmark: NamedSchedules]

Named Schedules

You can define cron schedules in your app’s app.conf and reference them anywhere for easy reuse.

Simply define your named cron schedule:

cron.workhours_15m = 0 */15 9-17 ? * MON-FRI

Then, reference it anywhere you would have used a cron spec.

{% highlight go %}
func init() {
revel.OnAppStart(func() {
jobs.Schedule(”cron.workhours_15m”, ReminderEmails{})
})
}
{% endhighlight %}

IMPORTANT: The schedule's name must begin with `cron.`.
[bookmark: OneOffJobs]

One-off Jobs

The jobs module allows you to schedule a job to be run once. You can control how long to wait before the job runs.

{% highlight go %}
type AppController struct { *revel.Controller }

func (c AppController) Method() revel.Result {
// Handle the request.
…

// Send them email asynchronously, right now.
jobs.Now(SendConfirmationEmail{})

// Or, send them email asynchronously after a minute.
jobs.In(time.Minute, SendConfirmationEmail{})

}
{% endhighlight %}

Registering Job Functions

It is possible to register any func() as a job by wrapping it in the jobs.Func [https://godoc.org/github.com/revel/modules/jobs/app/jobs#Func] type.

{% highlight go %}
func sendReminderEmails() {
// Query the DB
// Send some email
}

func init() {
revel.OnAppStart(func() {
jobs.Schedule(”@midnight”, jobs.Func(sendReminderEmails))
})
}
{% endhighlight %}

Job Status

The jobs module provides a status page (/@jobs url) that shows:

	a list of the scheduled jobs

	the current status (IDLE or RUNNING)

	the previous and next run times

For security purposes, the status page is limited to requests that originate
from 127.0.0.1.
[image: ../_images/jobs-status.png]Job Status Page

Constrained Pool Size

It’s possible to configure the job module to limit the number of jobs that are
allowed to run at the same time. This allows the developer to restrict the
resources that could be potentially in use by asynchronous jobs – typically
interactive responsiveness is valued above asynchronous processing. When a pool
is full of running jobs, new jobs block to wait for running jobs to complete.

Implementation Note: The implementation blocks on a channel receive, which is
implemented to be FIFO [http://en.wikipedia.org/wiki/FIFO] for waiting goroutines (but not specified/required to be
so). See here for discussion [https://groups.google.com/forum/?fromgroups=#%21topic/golang-nuts/CPwv8WlqKag].

Future areas for development

	Allow access to the job status page with HTTP Basic Authentication credentials

	Allow administrators to run scheduled jobs interactively from the status page

	Provide more visibility into the job runner, e.g. the pool size, the job queue length, etc.

 title: FastHTTP Server Engine layout: modules github: labels: - topic-server-engine

title: FastHTTP Server Engine
layout: modules
github:
labels:
- topic-server-engine

This module wraps the FastHTTP [https://github.com/valyala/fasthttp] server engine.
Please note that it does not support WebSockets.

Setup

Set the following keys in your application’s app.conf:

	server.engine You must set this to fasthttp in order to use this server engine

	module.fasthttp You must set this to github.com/revel/modules/server-engine/fasthttp to register the fasthttp server engine

Other Notes

All features from supported by a regular HTTP engine is supported by this server engine.
Memory usage is decreased because this engine makes reuse of allocated structures to
handle requests. This should also increase overall runtime performance and throughput.
Results are not buffered as well.

 title: NewRelic Server Engine layout: modules github: labels: - topic-server-engine

title: NewRelic Server Engine
layout: modules
github:
labels:
- topic-server-engine

This module wraps the Go HTTP server and inserts a filter to track each request
using NewRelic [http://newrelic.com].

Setup

Set the following keys in your application’s app.conf:

	server.engine Set to newrelic

	server.newrelic.license Set to your NewRelic license key

	server.newrelic.addfilter Inserts filter into revel.Filters at position 2 to log every request. Default: true

Other Notes

To access the newrelic.Application instance, embed the RelicController into your Revel controller and call the GetRelicApplication() method.

 title: Static File Server layout: modules github: labels: - topic-static-file-server - topic-runtime

title: Static File Server
layout: modules
github:
labels:
- topic-static-file-server
- topic-runtime

For serving directories of static assets, Revel provides the static built in module,
which contains a single
Static [https://godoc.org/github.com/revel/modules/static/app/controllers#Static]
controller. Static.Serve [https://godoc.org/github.com/revel/modules/static/app/controllers#Static.Serve] action takes two parameters:

Config

The static [https://godoc.org/github.com/revel/modules/static/app/controllers] module
is optional and is enabled by default.

By default when you create a new project the following
configuration options are set in the app.conf file:

module.static = github.com/revel/modules/static

Additionally, these will be set in routes conf/routes:

	GET /public/*filepath Static.Serve("public")
	GET /favicon.ico Static.Serve("public","img/favicon.png")

As defined in the route manual the syntax used for defining
a route is Controller.Action(prefix,filepath). So the word public
has nothing to do with visibility, it follows the default
directory organization

	prefix (string) - A (relative or absolute) path to the asset root.

	filepath (string) - A relative path that specifies the requested file.

Bad example

GET /img/icon.png Static.Serve("public", "img/icon.png") << space causes error

Important:For the two parameters version of Static.Serve, blank spaces are not allowed between
" and , due to how encoding/csv works.

 title: Ace Template Engine layout: modules github: labels: - topic-template-engine

title: Ace Template Engine
layout: modules
github:
labels:
- topic-template-engine

The ACE [https://github.com/yosssi/ace] Template Engine

	Ace templates have full access to the revel.TemplateFuncs, any function
defined in there can be used by the this engine

	Ace files must be identified by using a shebang on the first line
(preferred method) or changing the file extension to home.ace.html.

	Ace templates can be set to be case sensitive by setting
ace.tempate.caseinsensitive=false, default is not case sensitive. If case sensitivity
is off internal imports must be done using lower case

	All function registered in revel.TemplateFuncs are available for use
inside the ace framework

Details

Ace is a little different of a templating system, its output is a
standard go template but there is no concept of template sets,
instead you build a composite template using
a base template and an inner template. The
inner template can only contain items like :
{% raw %}

= content main
h2 Inner Template - Main : {{.Msg}}

= content sub
h3 Inner Template - Sub : {{.Msg}}

{% endraw %}
The base template can contain items like
{% raw %}

= doctype html
html lang=en
 head
 meta charset=utf-8
 title Ace example
 = css
 h1 { color: blue; }
 body
 h1 Base Template : {{.Msg}}
 #container.wrapper
 = yield main
 = yield sub
 = include inc .Msg
 = javascript
 alert('{{.Msg}}');

{% endraw %}

You are allowed to include one inner template with the base template,
to do so in Revel you can extend your controller from the ace controller
and call RenderAceTemplate(base ,inner string) which will insert
the inner template using the outer template.

 title: Pongo2 Templates layout: modules github: labels: - topic-template-engine

title: Pongo2 Templates
layout: modules
github:
labels:
- topic-template-engine

The Pongo2 [https://github.com/flosch/pongo2] Template Engine

Pongo2 is the successor of pongo [https://github.com/flosch/pongo], a Django-syntax like templating-language.

Dependencies

Install/update using go get (no dependencies required by pongo2):

go get -u github.com/flosch/pongo2

Setup

Pongo2 template files should start with a shebang (#!) on the first line. Alternatively, you may append the suffix *.pongo2.html to template file names.

Control case sensitivity by setting pongo2.tempate.caseinsensitive=false in app.conf to:

	true (default) case insensitive

	false compiled using lower case (default)

Currently, the Pongo2 template engine can’t access revel.TemplateFuncs
(PR welcome). These functions are built-in:

	field

	radio

	option

	url

	checkbox

	append

Examples

Try pongo2 out in the pongo2 playground. [https://www.florian-schlachter.de/pongo2/]
{% raw %}

{%append "moreStyles" "ui-lightness/jquery-ui-1.7.2.custom.css"%}
{%append "moreScripts" "js/jquery-ui-1.7.2.custom.min.js"%}
{% include "header.html" %}

<h1>Book hotel</h1>

<form method="POST" action="{%url "Hotels.Book" hotel.HotelId%}">
 <p>
 Name: {{hotel.Name}}
 </p>
 <p>
 Address: {{hotel.Address}}
 </p>
 <p>
 City: {{hotel.City}}
 </p>
 <p>
 State: {{hotel.State}}
 </p>
 <p>
 Zip: {{hotel.Zip}}
 </p>
 <p>
 Country: {{hotel.Country}}
 </p>
 <p>
 Nightly rate: {{hotel.Price}}
 </p>
 {%with field = "booking.CheckInDate"|field %}
 <p class="{{field.ErrorClass}}">
 Check In Date:
 <input type="text" size="10" name="{{field.Name}}" class="datepicker" value="{{field.Flash}}">
 * {{field.Error}}
 </p>
 {% endwith %}
 {%with field = "booking.CheckOutDate"|field %}
 <p class="{{field.ErrorClass}}">
 Check Out Date:
 <input type="text" size="10" name="{{field.Name}}" class="datepicker" value="{{field.Flash}}">
 * {{field.Error}}
 </p>
 {% endwith %}
 <p>
 Room preference:
 {%with field = "booking.Beds"|field %}
 <select name="{{field.Name}}">
 {%option field "1" "One king-size bed"%}
 {%option field "2" "Two double beds"%}
 {%option field "3" "Three beds"%}
 </select>
 {% endwith %}
 </p>
 <p>
 Smoking preference:
 {%with field = "booking.Smoking"|field %}
 {%radio field "true"%} Smoking
 {%radio field "false"%} Non smoking
 {% endwith %}
 </p>
 {%with field = "booking.CardNumber"|field %}
 <p class="{{field.ErrorClass}}">
 Credit Card #:
 <input type="text" name="{{field.Name}}" size="16" value="{{field.Flash}}">
 * {{field.Error}}
 </p>
 {% endwith %}
 {%with field = "booking.NameOnCard"|field %}
 <p class="{{field.ErrorClass}}">
 Credit Card Name:
 <input type="text" name="{{field.Name}}" size="16" value="{{field.Flash}}">
 * {{field.Error}}
 </p>
 {% endwith %}
 <p>
 Credit Card Expiry:
 {%with field = "booking.CardExpMonth"|field %}
 <select name="{{field.Name}}">
 {%option field "1" "Jan"%}
 {%option field "2" "Feb"%}
 {%option field "3" "Mar"%}
 {%option field "4" "Apr"%}
 {%option field "5" "May"%}
 {%option field "6" "Jun"%}
 {%option field "7" "Jul"%}
 {%option field "8" "Aug"%}
 {%option field "9" "Sep"%}
 {%option field "10" "Oct"%}
 {%option field "11" "Nov"%}
 {%option field "12" "Dec"%}
 </select>
 {% endwith %}
 {%with field = "booking.CardExpYear"|field %}
 <select name="{{field.Name}}">
 {%option field "2008" "2008"%}
 {%option field "2009" "2009"%}
 {%option field "2010" "2010"%}
 {%option field "2011" "2011"%}
 {%option field "2012" "2012"%}
 </select>
 {% endwith %}
 </p>
 <p class="buttons">
 <input type="submit" value="Proceed">
 Cancel
 </p>
</form>

<script type="text/javascript" charset="utf-8">
$(function() {
 $(".datepicker").datepicker({dateFormat: 'yy-mm-dd'});
});
</script>

{% include "footer.html" %}

{% endraw %}

 title: Testing layout: modules

title: Testing
layout: modules

Revel provides a testing framework that makes it easy to write and run functional tests against an application.

The skeleton app [https://github.com/revel/revel/tree/master/skeleton] comes with a simple apptest.go [https://github.com/revel/revel/blob/master/skeleton/tests/apptest.go] to use as a starting point.

Testing Overview

Tests needs to be in the tests/ directory:

myapp/
	app/
	conf/
	public/
	tests/ <----

 WARNING: The name of test file should avoid naming like name_test.go format which would be ignored by go build tool. Please check the Detail.
A simple test file looks like the following:

{% highlight go %}
import (
“github.com/revel/revel/testing”
)

// Must Embed testing.TestSuite
type MyAppTest struct {
testing.TestSuite
}

// Run this before a request
func (t *MyAppTest) Before() {
println(”Set up”)
}

// Run this after request
func (t *MyAppTest) After() {
println(”Tear down”)
}

// Check main page is kinda there
func (t *MyAppTest) TestIndexPage() {
t.Get(”/”)
t.AssertOk()
t.AssertContentType(”text/html”)
}
// Check if robots.txt exists
func (t *MyAppTest) TestRobotsPage() {
t.Get(”/robots.txt”)
t.AssertOk()
t.AssertContentType(”text/html”)
}
// Will not appear in panel as it does not start with Test.
func (t *MyAppTest) TEstFavIcon() {
t.Get(”/favicon.ico”)
t.AssertOk()
t.AssertContentType(”text/html”)
}
{% endhighlight %}

The example code above shows a few things:

	A test suite is any struct that embeds TestSuite [https://godoc.org/github.com/revel/revel/testing#TestSuite]

	Before() and After() are invoked before and after every test method, if present.

	The TestSuite [https://godoc.org/github.com/revel/revel/testing#TestSuite] provides helpers for issuing requests to your application and for asserting things about the response.

	An assertion failure generates a panic, which is caught by the test harness.

	Each test method must contain the case-sensitive prefix ‘Test’

You may run this test in two ways:

	Interactively - from your web browser, useful during test development.

	Non-interactively - from the command line, useful for integrating with a continuous build.

Developing a test suite

To create your own test suite, define a struct that embeds TestSuite [https://godoc.org/github.com/revel/revel/testing#TestSuite], which
provides a HTTP client and a number of helper methods for making requests to the application.

{% highlight go %}
type TestSuite struct {
Client *http.Client
Response *http.Response
ResponseBody []byte
}

// Some request methods
func (t *TestSuite) Get(path string)
func (t *TestSuite) Post(path string, contentType string, reader io.Reader)
func (t *TestSuite) PostForm(path string, data url.Values)
func (t *TestSuite) NewTestRequest(req *http.Request) *TestRequest

// Some assertion methods
func (t *TestSuite) AssertOk()
func (t *TestSuite) AssertContentType(contentType string)
func (t *TestSuite) Assert(exp bool)
func (t *TestSuite) Assertf(exp bool, formatStr string, args …interface{})
{% endhighlight %}

All request methods behave similarly:

	They accept a path (e.g. /users/)

	They issue the Request [https://godoc.org/github.com/revel/revel#Request] to the app server

	They store the response in the Response [https://godoc.org/github.com/revel/revel#Response] member.

	They read the full response body into the ResponseBody member.

If the developer wishes to use a customized HTTP Client instead of the default http.DefaultClient [http://golang.org/pkg/net/http/#pkg-variables], they should replace it in the Before() method.

All assertions raise a panic if they are not fulfilled. All panics are caught by the test harness and presented as errors.

Running a test suite

In order to run any tests, the testrunner module must be activated. This is done by including the following line in your app.conf:

module.testrunner = github.com/revel/modules/testrunner

You must also import the test module’s routes, by adding this line to your routes file:

module:testrunner

With that done, the tests may be run interactively at the /@tests url, or non-interactively on the command line.

[bookmark: interactively]

Running tests interactively

To take advantage of Revel’s hot-compile functionality, an interactive test runner is provided for quick edit-refresh cycles.

For example, the developer loads /@tests in their browser:

[image: ../_images/Tests1.png]Test Runner interface

Then they add a test method:

{% highlight go %}
func (t AppTest) TestSomethingImportant() {
t.Get(”/”)
t.AssertOk()
t.AssertContentType(”text/xml”)
}
{% endhighlight %}

Then they refresh their browser to see their new test:

[image: ../_images/Tests2.png]Test Runner interface

They run the test:

[image: ../_images/Tests3.png]Test Runner interface

Uh oh. It doesn’t work. They fix the code to expect a content type of “text/html” instead of “text/xml”:

{% highlight go %}
t.AssertContentType(”text/html”)
{% endhighlight %}

Then they re-run the test:

[image: ../_images/Tests4.png]Test Runner interface

Success.

[bookmark: non-interactively]

Running tests non-interactively

The Revel command line tool provides a test command that allows all application tests to be run from the command line.

Here is an example session:

$ revel test github.com/revel/examples/booking dev
~
~ revel! http://revel.github.io
~
INFO 2012/11/09 19:21:02 revel.go:237: Loaded module testrunner
Open DB
Listening on port 9000...
INFO 2012/11/09 19:21:06 test.go:95: Testing Booking example (github.com/revel/examples/booking) in dev mode
Go to /@tests to run the tests.

1 test suite to run.

AppTest PASSED 0s

All Tests Passed.

You can also run a single test suite, or method within that suite, with a period-separated parameter:

$ revel test github.com/revel/examples/booking dev ApplicationTest
$ revel test github.com/revel/examples/booking dev ApplicationTest.TestThatIndexPageWorks

In the console only a simple PASSED/FAILED overview by test suite is displayed. The tool writes more detailed results to the filesystem:

$ cd src/github.com/revel/examples/booking
$ find test-results
test-results
test-results/app.log
test-results/AppTest.passed.html
test-results/result.passed

It writes three different things:

	The application’s stdout and stderr are redirected to app.log

	One HTML file per test suite is written, describing the tests that passed or failed.

	Either result.passed or result.failed is written, depending on the overall success.

There are two suggested mechanisms for integrating this into a continuous build:

	Check the return code, which is 0 for a successful test run and non-zero otherwise.

	Require the presence of result.success after the run, or disallow the presence of result.failed.

Implementation notes

What Revel does is:

	Scan the test source code for types that (transitively) embed TestSuite

	Set the revel.TestSuites variable to a list of those types in the generated main.go file.

	On demand, uses reflection to find all methods beginning with “Test” on the TestSuite types, and invokes them to run the test.

	Catches panics from bugs or failed assertions and displays the error helpfully.

Testing code is only built when the special testrunner module is activated.

Areas for development

The testing framework could use the following improvements:

	Fixtures for populating a datastore with test data.

	Loggers that write to a file (instead of stderr / stdout) should also be redirected to test-results/app.log

- See the godocs for [`Testing`](https://godoc.org/github.com/revel/revel/testing)

 title: Quick Ref layout: quickref

title: Quick Ref
layout: quickref

revel.Config [https://godoc.org/github.com/revel/revel#Config], manual

	Routing

	Static Files

	InterceptorFunc [https://godoc.org/github.com/revel/revel#InterceptorFunc], InterceptorMethod [https://godoc.org/github.com/revel/revel#InterceptorMethod], manual

	Filters [https://godoc.org/github.com/revel/revel#Filters], manual

	Logging, config

	Debugging

	Revel Events [https://godoc.org/github.com/revel/revel#OnAppStop] , manual

Revel Core

	OnAppStart [https://godoc.org/github.com/revel/revel#OnAppStart], manual

	OnAppStop [https://godoc.org/github.com/revel/revel#OnAppStop], manual

	Manual Shutdown [https://godoc.org/github.com/revel/revel#StopServer] , manual

	Custom Mux [https://godoc.org/github.com/revel/revel#AddHTTPMux] , manual

	ServerEngine [https://godoc.org/github.com/revel/revel#ServerEngine], manual

	TemplateEngine [https://godoc.org/github.com/revel/revel#TemplateEngine], manual

	SessionEngine [https://godoc.org/github.com/revel/revel#SessionEngine], manual

Controller [https://godoc.org/github.com/revel/revel#Controller], manual

	Request [https://godoc.org/github.com/revel/revel#Request]

	Params [https://godoc.org/github.com/revel/revel#Params], manual

	Binder [https://godoc.org/github.com/revel/revel#Binder], manual

	Validation [https://godoc.org/github.com/revel/revel#Validation], manual

	Result [https://godoc.org/github.com/revel/revel#Result], manual

	RenderJSON [https://godoc.org/github.com/revel/revel#Controller.RenderJSON], manual

	RenderXML [https://godoc.org/github.com/revel/revel#Controller.RenderXML], manual

	RenderTemplate() [https://godoc.org/github.com/revel/revel#Controller.RenderTemplate], Template [https://godoc.org/github.com/revel/revel#Template], manual, config

	Template Functions

	ErrorResult [https://godoc.org/github.com/revel/revel#ErrorResult], RenderError() [https://godoc.org/github.com/revel/revel#Controller.RenderError]

	NotFound() [https://godoc.org/github.com/revel/revel#Controller.NotFound], Todo() [https://godoc.org/github.com/revel/revel#Controller.Todo]

	Session [https://godoc.org/github.com/revel/revel#Session], manual, config

	Flash [https://godoc.org/github.com/revel/revel#Flash], manual

	Controller.SetCookie() [https://godoc.org/github.com/revel/revel#Controller.SetCookie]

	Cache [https://godoc.org/github.com/revel/revel#Cache], manual, config

Modules, routing

	Jobs [https://godoc.org/github.com/revel/revel#Jobs], manual, config

	TestSuite [https://godoc.org/github.com/revel/revel/testing#TestSuite], manual

 layout: quickstart title: Quickstart

layout: quickstart
title: Quickstart

This is a short guide to help you get the information you need in a quick manner.
It is divided into sections as listed on the side.

	The controller section discusses the controller, methods and responses

	The model section discusses models and how to validate them

	The view section discusses using templates.

	The module section discusses on how to make your components modular.

	The prebuilt modules section discusses on how to configure and use the modules that come standard with revel.

 layout: quickstart title: Controllers

layout: quickstart
title: Controllers

A controller is a container for the request methods. You could have every request tied to an method in one controller
but a better practice would be to divide the work up amongst controllers in a logical manner,
refer to the hotel application for an example.

##Coding Rules
Two important rules, the Controller must be the first type when defined in a file, the following example the Foo
controller will not be found

type (
	Bar struct {
		*revel.Controller
	}
	Foo struct {
		*revel.Controller
	}
)

Coded properly it would be like this

	type (
		Bar struct {
			*revel.Controller
		}
)
	type (
		Foo struct {
			*revel.Controller
		}
)

or this

	type Bar struct {
		*revel.Controller
	}
	type Foo struct {
		*revel.Controller
	}

The second rule is that a controller can only exist in a folder called controllers, if you intend to extend all your controllers
from a common one make sure that the common one exists in a folder called controllers as well, or none of your controllers
will be found

##Extending the Controller
A Controller is any type that embeds *revel.Controller (directly or indirectly).
This means controllers may extend other classes, here is an example on how to do that. Note in the MyController the
BaseController reference is NOT a pointer

type (
	BaseController struct {
		*revel.Controller
	}
)
type (
	MyController struct {
		BaseController
	}
)

 layout: quickstart title: Quickstart

layout: quickstart
title: Quickstart

For a controller there are two components to map a request to an method and to determine how the data is processed

The route maps the request to the Action (Controller.Method),
it also
provides url parameter mapping, templates also make use of this file to map a controller method and paramater to
a linkable request.

The parameter or end function point also are
intelligently designed. ie if paramaters are passed in which match the variables name in the function then those objects
will be populated via the paramater(s). This goes beyond simple string and ints, you can also populate structures so
a fully populated form object is achievable with only one input.

 layout: quickstart title: Quickstart

layout: quickstart
title: Quickstart

Revel tries to make the conversion of parameters into their desired Go types as
easy as possible. This conversion from string to another type is referred to as
“data binding”.

Params

All request parameters are collected into a single Params object. That includes:

	URL Path parameters

	URL Query parameters

	Form values (Multipart or not)

	File uploads

This is the definition (godoc):

type Params struct {
	url.Values
	Files map[string][]*multipart.FileHeader
}

The embedded url.Values (godoc [http://www.golang.org/pkg/net/url/#Values])
does provide accessors for simple values, but developers will find it easier to
use Revel’s data-binding mechanisms for any non-string values.

Method arguments

Parameters may be accepted directly as method arguments by the method. For
example:

func (c AppController) Method(name string, ids []int, user User, img []byte) revel.Result {
	...
}

Before invoking the method, Revel asks its Binder to convert parameters of those
names to the requested data type. If the binding is unsuccessful for any
reason, the parameter will have the zero value for its type.

Binder

To bind a parameter to a data type, use Revel’s Binder
(godoc). It is integrated with the Params object
as the following example shows:

{% raw %}

func (c SomeController) Method() revel.Result {
	var ids []int
	c.Params.Bind(&ids, "ids")
	...
}

{% endraw %}

The following data types are supported out of the box:

	Ints of all widths

	Bools

	Pointers to any supported type

	Slices of any supported type

	Structs

	time.Time for dates and times

	*os.File, []byte, io.Reader, io.ReadSeeker for file uploads

The following sections describe the syntax for these types. It is also useful
to refer to the source code if more detail is required.

Booleans

The string values “true”, “on”, and “1” are all treated as true. Else, the
bound value will be false.

Slices

There are two supported syntaxes for binding slices: ordered or unordered.

Ordered:

?ids[0]=1
&ids[1]=2
&ids[3]=4

Results in the slice []int{1, 2, 0, 4}

Unordered:

?ids[]=1
&ids[]=2
&ids[]=3

results in the slice []int{1, 2, 3}

Note: Only ordered slices should be used when binding a slice of structs:

?user[0].Id=1
&user[0].Name=rob
&user[1].Id=2
&user[1].Name=jenny

Structs

Structs are bound using a simple dot notation:

?user.Id=1
&user.Name=rob
&user.Friends[]=2
&user.Friends[]=3
&user.Father.Id=5
&user.Father.Name=Hermes

would bind a structure defined as:

type User struct {
	Id int
	Name string
	Friends []int
	Father User
}

Note: Properties must be exported in order to be bound.

Date / Time

The SQL standard time formats [”2006-01-02”, “2006-01-02 15:04”] are built in.

More may be added by the application, using
the official pattern [http://golang.org/pkg/time/#pkg-constants]. Simply add
the pattern to recognize to the TimeFormats variable, like this:

func init() {
	revel.TimeFormats = append(revel.TimeFormats, "01/02/2006")
}

File Uploads

File uploads may be bound to any of the following types:

	*os.File

	[]byte

	io.Reader

	io.ReadSeeker

This is a wrapper around the upload handling provided by
Go’s multipart package [http://golang.org/pkg/mime/multipart/]. The bytes
stay in memory unless they exceed a threshold (10MB by default), in which case
they are written to a temp file.

Note: Binding a file upload to os.File requires Revel to write it to a
temp file (if it wasn’t already), making it less efficient than the other types.

Custom Binders

The application may define its own binders to take advantage of this framework.

It need only implement the binder interface and register the type for which it
should be called:

var myBinder = revel.Binder{
	Bind: func(params *revel.Params, name string, typ reflect.Type) reflect.Value {...},
	Unbind: func(output map[string]string, name string, val interface{}) {...},
}

func init() {
	revel.TypeBinders[reflect.TypeOf(MyType{})] = myBinder
}

JSON

Posted JSON data is automatically processed when the http header ContentType is application/json
or text/json. The raw bytes are stored in the Param.JSON []byte

JSON data will be automatically unmarshalled to the first structure or map that is
encountered in the Action Argument.

When calling c.Params.Bind(target,paramname), JSON data is always ignored, you can call
c.Params.BindJSON(target) to bind the JSON data to the specified object. You must pass
a pointer to the c.Params.BindJSON(target) function.

func (c Hotels) Show() revel.Result {
 var jsonData map[string]interface{}
 c.Params.BindJSON(&jsonData)
 ...
}

 layout: quickstart title: Quickstart - Input Routing

layout: quickstart
title: Quickstart - Input Routing

Routes are defined in a separate routes file.

The basic syntax is:

(METHOD) (URL Pattern) (Controller.Method)

This example demonstrates all of the features:

conf/routes
This file defines all application routes (Higher priority routes first)

module:jobs # Import all routes from the jobs module

GET /login App.Login # A simple path
GET /hotels/ Hotels.Index # Match /hotels and /hotels/ (optional trailing slash)
GET /hotels/:id Hotels.Show # Extract a URI argument
WS /hotels/:id/feed Hotels.Feed # WebSockets.
POST /hotels/:id/:method Hotels.:method # Automatically route the controller Hotels methods.
GET /public/*filepath Static.Serve("public") # Map /app/public resources under /public/...
* /debug/ module:testrunner # Prefix all routes in the testrunner module with /debug/
* /:controller/:method :controller.:method # Catch all; Automatic URL generation

Let’s go through the lines one at a time. At the end, we’ll see how to
accomplish reverse routing – generating the URL to invoke a particular method.

A simple path

GET /login App.Login

The simplest route uses an exact match on method and path. It invokes the Login
method on the App controller.

Trailing slashes

GET /hotels/ Hotels.Index

This route invokes Hotels.Index for both /hotels and /hotels/. The
reverse route to Hotels.Index will include the trailing slash.

Trailing slashes should not be used to differentiate between methods. The
simple path /login will be matched by a request to /login/.

URL Parameters

GET /hotels/:id Hotels.Show

Segments of the path may be matched and extracted. The :id variable will
match anything except a slash. For example, /hotels/123 and
/hotels/abc would both be matched by this route.

Extracted parameters are available in the Controller.Params map, as well as
via method parameters. For example:

func (c Hotels) Show(id int) revel.Result {
	...
}

or

func (c Hotels) Show() revel.Result {
	var id string = c.Params.Get("id")
	...
}

or

func (c Hotels) Show() revel.Result {
	var id int
	c.Params.Bind(&id, "id")
	...
}

Star parameters

GET /public/*filepath Static.Serve("public")

The router recognizes a second kind of wildcard. The starred parameter must be
the last element in the path, and it matches all following path elements.

For example, in this case it will match any path beginning with “/public/”, and
its value will be exactly the path substring that follows that prefix.

Websockets

WS /hotels/:id/feed Hotels.Feed

Websockets are routed in the same way as other requests, using a method
identifier of WS.

The corresponding method would have this signature:

func (c Hotels) Feed(ws revel.ServerWebSocket, id int) revel.Result {
	...
}

Static Serving

GET /public/*filepath Static.Serve("public")
GET /favicon.ico Static.Serve("public","img/favicon.png")

For the 2 parameters version of Static.Serve, blank spaces are not allowed between
“ and , due to how encoding/csv works.

For serving directories of static assets, Revel provides the static module,
which contains a single
Static [http://godoc.org/github.com/revel/revel/modules/static/app/controllers]
controller. Its Serve method takes two parameters:

	prefix (string) - A (relative or absolute) path to the asset root.

	filepath (string) - A relative path that specifies the requested file.

(Refer to organization for the directory layout)

Fixed parameters

As demonstrated in the Static Serving section, routes may specify one or more
parameters to the method. For example:

GET /products/:id ShowList("PRODUCT")
GET /menus/:id ShowList("MENU")

The provided argument(s) are bound to a parameter name using their position. In
this case, the list type string would be bound to the name of the first method
parameter.

This could be helpful in situations where:

	you have a couple similar methods

	you have methods that do the same thing, but operate in different modes

	you have methods that do the same thing, but operate on different data types

Routing Modules

Modules which contain routes can be imported into your application in two ways:

First method: Importing routes as-is using the following in your routes file:

This is your routes file
module:mymodule

Your other routes
GET / Application.Index
GET /bar Application.Bar

Second method: Importing the routes under a prefixed path:

This is your routes file
* /foo module:mymodule # Must be defined with asterisk for the method
	
Your other routes
GET / Application.Index
GET /bar Application.Bar

Assuming mymodule has a routes file containing:

GET /gopher MyModule.FetchGopher
POST /gopher/add MyModule.AddGopher

Then in the first example, the routes would be imported into your application with the URL patterns /gopher and /gopher/add. In the second example, the routes would be imported with the URL patterns /foo/gopher and /foo/gopher/add.

Auto Routing

POST /hotels/:id/:method Hotels.:method
* /:controller/:method :controller.:method

URL argument extraction can also be used to determine the invoked method.
Matching to controllers and method is case insensitive.

The first example route line would effect the following routes:

/hotels/1/show => Hotels.Show
/hotels/2/details => Hotels.Details

Similarly, the second example may be used to access any Action (Controller.Method) in the
application:

/app/login => App.Login
/users/list => Users.List

Since matching to controllers and methods is case insensitive, the following
routes would also work:

/APP/LOGIN => App.Login
/Users/List => Users.List

Using auto-routing as a catch-all (e.g. last route in the file) is useful for
quickly hooking up actions to non-vanity URLs, especially in conjunction with
the reverse router..

Reverse Routing

It is good practice to use a reverse router to generate URLs for a couple reasons:

	Avoids misspellings

	The compiler ensures that reverse routes have the right number and type of
parameters.

	Localizes URL changes to one place: the routes file.

Upon building your application, Revel generates an app/routes package. Use it
with a statement of the form:

routes.Controller.Method(param1, param2)

The above statement returns a URL (type string) to Controller.Method with the
given parameters. Here is a more complete example:

{% capture html %}
import (
	"github.com/revel/revel"
	"project/app/routes"
)

type App struct { *revel.Controller }

// Show a form
func (c App) ViewForm(username string) revel.Result {
	return c.Render(username)
}

// Process the submitted form.
func (c App) ProcessForm(username, input string) revel.Result {
	...
	if c.Validation.HasErrors() {
		c.Validation.Keep()
		c.Flash.Error("Form invalid. Try again.")
		return c.Redirect(routes.App.ViewForm(username)) //

 layout: quickstart title: Controllers - Overview

layout: quickstart
title: Controllers - Overview

A Controller is any type that embeds *revel.Controller (directly or indirectly).

Typically:
{% raw %}

type AppController struct {
	*revel.Controller
}

{% endraw %}

(*revel.Controller must be embedded as the first type in your struct)

The revel.Controller is the context for the request. It contains the request
and response data. Please refer to the godoc
for the full story, but here is the definition (along with definitions of helper types):

{% raw %}

type Controller struct {
	Name string // The controller name, e.g. "Application"
	Type *ControllerType // A description of the controller type.
	MethodType *MethodType // A description of the invoked method type.
	AppController interface{} // The controller that was instantiated.

	Request *Request
	Response *Response
	Result Result

	Flash Flash // User cookie, cleared after 1 request.
	Session Session // Session, stored in cookie, signed.
	Params *Params // Parameters from URL and form (including multipart).
	Args map[string]interface{} // Per-request scratch space.
	ViewArgs map[string]interface{} // Args passed to the template.
	Validation *Validation // Data validation helpers
}

// These provide a unified view of the request params.
// Includes:
// - URL query string
// - Form values
// - File uploads
type Params struct {
	url.Values
	Files map[string][]*multipart.FileHeader
}

type Request struct {
	*http.Request
	ContentType string
}

type Response struct {
	Status int
	ContentType string
	Headers http.Header
	Cookies []*http.Cookie

	Out http.ResponseWriter
}

{% endraw %}
As part of handling a HTTP request, Revel instantiates an instance of your
Controller, and it sets all of these properties on the embedded
revel.Controller. Therefore, Revel does not share Controller instances between
requests.

 layout: quickstart title: Quickstart

layout: quickstart
title: Quickstart

Methods must return a revel.Result, which
handles the response generation. It adheres to a simple interface:

type Result interface {
	Apply(req *Request, resp *Response)
}

revel.Controller provides a couple
methods to produce Results:

	Render, RenderTemplate - render a template, passing arguments.

	RenderJson, RenderXml - serialize a structure to json or xml.

	RenderText - return a plaintext response.

	Redirect - redirect to another action (Controller.Method) or URL

	RenderFile - return a file, generally to be downloaded as an attachment.

	RenderError - return a 500 response that renders the errors/500.html template.

	NotFound - return a 404 response that renders the errors/404.html template.

	Todo - return a stub response (500)

Additionally, the developer may define their own revel.Result and return that.

 title: Results layout: quickstart

title: Results
layout: quickstart

Methods must return a revel.Result, which
handles the response generation. It adheres to a simple interface:

type Result interface {
	Apply(req *Request, resp *Response)
}

revel.Controller provides a couple
methods to produce Results:

	Render, RenderTemplate - render a template, passing arguments.

	RenderJson, RenderXml - serialize a structure to json or xml.

	RenderText - return a plaintext response.

	Redirect - redirect to another action (Controller.Method) or URL

	RenderFile - return a file, generally to be downloaded as an attachment.

	RenderError - return a 500 response that renders the errors/500.html template.

	NotFound - return a 404 response that renders the errors/404.html template.

	Todo - return a stub response (500)

Additionally, the developer may define their own revel.Result and return that.

Setting the Status Code / Content Type

Each built-in Result has a default Status Code and Content Type. To override
those defaults, simply set those properties on the response:

func (c App) Method() revel.Result {
	c.Response.Status = http.StatusTeapot
	c.Response.ContentType = "application/dishware"
	return c.Render()
}

Render

Called within an action (e.g. “Controller.Method”),
mvc.Controller.Render does two things:

	Adds all arguments to the controller’s ViewArgs, using their local identifier as the key.

	Executes the template “views/Controller/Method.html”, passing in the controller’s “ViewArgs” as the data map.

If unsuccessful (e.g. it could not find the template), it returns an ErrorResult instead.

This allows the developer to write:

func (c MyApp) Method() revel.Result {
	myValue := calculateValue()
	return c.Render(myValue)
}

and to use “myValue” in their template. This is usually more convenient than
constructing an explicit map, since in many cases the data will need to be
handled as a local variable anyway.

Note: Revel looks at the calling method name to determine the Template
path and to look up the argument names. Therefore, c.Render() may only be
called from Controller Methods.

RenderJson / RenderXml

The application may call
RenderJson or
RenderXml and pass in any Go
type (usually a struct). Revel will serialize it using
json.Marshal [http://www.golang.org/pkg/encoding/json/#Marshal] or
xml.Marshal [http://www.golang.org/pkg/encoding/xml/#Marshal].

If results.pretty=true in app.conf, serialization will be done using
MarshalIndent instead, to produce nicely indented output for human
consumption.

Redirect

A helper function is provided for generating redirects. It may be used in two ways.

	Redirect to an action with no arguments:

 return c.Redirect(Hotels.Settings)
This form is useful as it provides a degree of type safety and independence from
the routing. (It generates the URL automatically.)

	Redirect to a formatted string:

 return c.Redirect("/hotels/%d/settings", hotelId)
This form is necessary to pass arguments.

It returns a 302 (Temporary Redirect) status code.

Adding your own Result

Here is an example of adding a simple Result.

Create this type:

import ("net/http")

type Html string

func (r Html) Apply(req *revel.Request, resp *revel.Response) {
	resp.WriteHeader(http.StatusOK, "text/html")
	resp.Out.Write([]byte(r))
}

Then use it in an method:

{% capture html %}
func (c *App) Method() revel.Result {
	return Html("Hello World")
}{% endcapture %}{{ html|escape }}

Status Codes

Each Result will set a status code by default. You can override the default
status code by setting one yourself:

func (c *App) CreateEntity() revel.Result {
	c.Response.Status = 201
	return c.Render()
}

 title: Templates layout: quickstart

title: Templates
layout: quickstart

Revel uses Go Templates [http://www.golang.org/pkg/text/template/]. It
searches two directories for templates:

	The application’s views directory (and all subdirectories)

	Revel’s own templates directory.

Given a controller named Hello with an method named World, Revel will
look for a template file named views/Hello/World.html. Template file names
are case insensitive so views/hello/world.html will work the same as
views/HeLlO/wOrLd.HtMl.

Revel provides templates for error pages (that display the friendly compilation
errors in DEV mode), but the application may override them by creating a
template of the equivalent name, e.g. app/views/errors/500.html.

Render Context

Revel executes the template using the ViewArgs data map. Aside from
application-provided data, Revel provides the following entries:

	“errors” - the map returned by
Validation.ErrorMap

	“flash” - the data flashed by the previous request.

Template Functions

Go provides
a few functions [http://www.golang.org/pkg/text/template/#Functions] for use in
your templates. Revel adds to those. Read the documentation below or
check out their source code.

eq

A simple “a == b” test.

Example:

{% raw %}

<div class="message {{if eq .User "you"}}you{{end}}">

{% endraw %}

set

Set a variable in the given context.

Example:

{% raw %}

{{set . "title" "Basic Chat room"}}

<h1>{{.title}}</h1>

{% endraw %}

append

Add a variable to an array, or start an array, in the given context.

Example:

{% raw %}

{{append . "moreScripts" "js/jquery-ui-1.7.2.custom.min.js"}}

{{range .moreStyles}}
 <link rel="stylesheet" type="text/css" href="/public/{{.}}">
{{end}}

{% endraw %}

field

A helper for input fields.

Given a field name, it returns a struct containing the following members:

	Id: the field name, converted to be suitable as a HTML element ID.

	Name: the field name

	Value: the value of the field in the current ViewArgs

	Flash: the flashed value of the field.

	Error: the error message, if any is associated with this field.

	ErrorClass: the raw string “hasError”, if there was an error, else “”.

See godoc.

Example:

{% raw %}

{{with $field := field "booking.CheckInDate" .}}
 <p class="{{$field.ErrorClass}}">
 Check In Date:
 <input type="text" size="10" name="{{$field.Name}}" class="datepicker" value="{{$field.Flash}}"> *
 {{$field.Error}}
 </p>
{{end}}

{% endraw %}

option

Assists in constructing HTML option elements, in conjunction with the field
helper.

Example:

{% raw %}

{{with $field := field "booking.Beds" .}}
<select name="{{$field.Name}}">
 {{option $field "1" "One king-size bed"}}
 {{option $field "2" "Two double beds"}}
 {{option $field "3" "Three beds"}}
</select>
{{end}}

{% endraw %}

radio

Assists in constructing HTML radio input elements, in conjunction with the field
helper.

Example:

{% raw %}

{{with $field := field "booking.Smoking" .}}
 {{radio $field "true"}} Smoking
 {{radio $field "false"}} Non smoking
{{end}}

{% endraw %}

nl2br

Convert newlines to HTML breaks.

Example:

{% raw %}

You said:
<div class="comment">{{nl2br .commentText}}</div>

{% endraw %}

pluralize

A helper for correctly pluralizing words.

Example:

{% raw %}

There are {{.numComments}} comment{{pluralize (len comments) "" "s"}}

{% endraw %}

raw

Prints raw, unescaped, text.

Example:

{% raw %}

<div class="body">{{raw .blogBody}}</div>

{% endraw %}

even

Perform $in % 2 == 0. This is a convenience function that assists with table row coloring.

Example:

{% raw %}

{{range $index, $element := .results}}
<tr class="{{if even $index}}danger{{end}}">
	...
</tr>
{{end}}

{% endraw %}

Including

Go Templates allow you to compose templates by inclusion. For example:

{% raw %}

{{template "header.html" .}}

{% endraw %}

There are two things to note:

	Paths are relative to app/views

Tips

The sample applications included with Revel try to demonstrate effective use of
Go Templates. In particular, please take a look at:

	revel/samples/booking/app/views/header.html

	revel/samples/booking/app/views/Hotels/Book.html

It takes advantage of the helper functions to set the title and extra styles in
the template itself.

For example, the header looks like this:

{% raw %}

<html>
 <head>
 <title>{{.title}}</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <link rel="stylesheet" type="text/css" media="screen" href="/public/css/main.css">
 <link rel="shortcut icon" type="image/png" href="/public/img/favicon.png">
 {{range .moreStyles}}
 <link rel="stylesheet" type="text/css" href="/public/{{.}}">
 {{end}}
 <script src="/public/js/jquery-1.3.2.min.js" type="text/javascript" charset="utf-8"></script>
 <script src="/public/js/sessvars.js" type="text/javascript" charset="utf-8"></script>
 {{range .moreScripts}}
 <script src="/public/{{.}}" type="text/javascript" charset="utf-8"></script>
 {{end}}
 </head>

{% endraw %}

And templates that include it look like this:

{% raw %}

{{set . title "Hotels"}}
{{append . "moreStyles" "ui-lightness/jquery-ui-1.7.2.custom.css"}}
{{append . "moreScripts" "js/jquery-ui-1.7.2.custom.min.js"}}
{{template "header.html" .}}

{% endraw %}

Custom Functions

Applications may register custom functions to use in templates.

Here is an example:

{% raw %}

func init() {
	revel.TemplateFuncs["eq"] = func(a, b interface{}) bool { return a == b }
}

{% endraw %}

 layout: quickstart title: Introduction

layout: quickstart
title: Introduction

Revel is evolving expect changes, changes.

 layout: quickstart title: Quickstart

layout: quickstart
title: Quickstart

 layout: quickstart title: Quickstart

layout: quickstart
title: Quickstart

 title: Creating a new Revel application layout: tutorial

title: Creating a new Revel application
layout: tutorial

Use the revel command line tool to create a new application in your GOPATH and run it:

$ export GOPATH="/home/me/gostuff"
$ cd $GOPATH
$ revel new -a myapp
Revel executing: create a skeleton Revel application
Your application has been created in:
 /home/me/gostuff/myapp

You can run it with:
 revel run -a myapp

$ revel run -a myapp
Revel executing: run a Revel application
WARN 11:21:51 harness.go:170: No http.addr specified in the app.conf listening on localhost interface only. This will not allow external access to your application
INFO 11:21:52 app run.go:32: Running revel server
INFO 11:21:52 app plugin.go:9: Go to /@tests to run the tests.
Revel engine is listening on.. localhost:40935
Revel proxy is listening, point your browser to : 9000

Notes When you run an application through the command line tool revel it is run as a proxy.
That is why you see the revel engine is listening on port X and Revel proxy is listening on
port Y.

$ revel run -a myapp
Revel executing: run a Revel application
WARN 20:12:59 harness.go:114: No http.addr specified in the app.conf listening on localhost interface only. This will not allow external access to your application
Proxy server is listening on :9000


```commandline

$ revel new -a github.com/myaccount/myapp
$ revel run -a github.com/myaccount/myapp





Open your browser to http://localhost:9000/ to see a notification that your app is ready.

[image: ../_images/YourApplicationIsReady.png]Your Application Is Ready


	The generated project structure is described in organization


	The HTTP port settings is in conf/app.conf


	There are a number of additional commands that can be run for revel see the  Revel tool document for a complete list




Next  How Revel handles requests.




          

      

      

    

  

  
    

    title: The ‘Hello World’ app layout: tutorial
    

    
 
  

    
      
          
            
  


title: The ‘Hello World’ app
layout: tutorial

This page runs through the quick exercise of implementing a “Hello World”
application.

Let’s start with the myapp project that was created previously.

Edit the app/views/App/Index.html template to add this form, under the
included flash.html template:

<form action="/App/Hello" method="GET">
    <input type="text" name="myName" /><br/>
    <input type="submit" value="Say hello!" />
</form>





Refresh the page to see our work.

[image: ../_images/AlohaForm.png]The Say Hello form

Enter some data and submit the form.

[image: ../_images/HelloRouteNotFound.png]Route not found

That makes sense.  Add the method to app/controllers/app.go:
{% highlight go %}
func (c App) Hello(myName string) revel.Result {
return c.Render(myName)
}
{% endhighlight %}

Next, we have to create the view.  Create a file
app/views/App/Hello.html, with this content:

{% capture ex %}{% raw %}
{{set . “title” “Hello page”}}
{{template “header.html” .}}

Hello {{.myName}}

Back to form{{template “footer.html” .}}
{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}

Finally, add the following to conf/routes file, just below the App.Index entry.

{% capture ex %}{% raw %}
GET     /App/Hello     App.Hello
{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}

Refresh the page, and you should see a greeting:

[image: ../_images/HelloRevel.png]Hello revel

Lastly, let’s add some validation.  The name should be required, and at least
three characters.

To do this, let’s use the validation module.  Edit
your method in app/controllers/app.go:
{% highlight go %}
func (c App) Hello(myName string) revel.Result {
c.Validation.Required(myName).Message(”Your name is required!”)
c.Validation.MinSize(myName, 3).Message(”Your name is not long enough!”)

if c.Validation.HasErrors() {
    c.Validation.Keep()
    c.FlashParams()
    return c.Redirect(App.Index)
}

return c.Render(myName)





}
{% endhighlight %}

Now it will send the user back to Index() if they have not entered a valid
name. Their name and the validation error are kept in the
Flash, which is a temporary cookie.

The provided flash.html template will show any errors or flash messages:

{% capture ex %}{% raw %}
{{if .flash.success}}


    {{.flash.success}}


{{end}}{{if or .errors .flash.error}}


    {{if .flash.error}}
        {{.flash.error}}
    {{end}}
    {{if .errors}}
    
        {{range .errors}}
            	{{.}}

        {{end}}
    

    {{end}}


{{end}}
{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}When we submit that form with a name that fails validation, we want the form to retain the bad name, so that the user can edit it before
re-submitting.  Amend the form you had added to your app/views/App/Index.html template:

{% capture ex %}{% raw %}


    {{with $field := field "myName" .}}
        

    {{end}}
    


{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}Now when we submit a single letter as our name:

[image: ../_images/HelloNameNotLongEnough.png]Example error

Success, we got an appropriate error and our input was saved for us to edit.


	Read more in the manual


	Look at the example applications





  
    

    title: Getting Started layout: tutorial
    

    
 
  

    
      
          
            
  


title: Getting Started
layout: tutorial



Install Go

Before you can use Revel, first you need to install Go [http://golang.org/doc/install].


	See the official Go installation guide [https://golang.org/doc/install].


	Ubuntu [https://github.com/golang/go/wiki/Ubuntu]


	Windows [https://golang.org/doc/install#windows]









Set up your GOPATH

If you have not created a GOPATH as part of the installation, do so now. The GOPATH
is a directory where all of your Go code will live. Here is one way of setting it up:


	Make a directory: mkdir ~/gocode


	Tell Go to use that as your GOPATH: export GOPATH=~/gocode


	Save your GOPATH so that it will apply to all future shell sessions: echo export GOPATH=$GOPATH >> ~/.bash_profile




Note that depending on your shell, you may need to adjust (3) to write the export into a different configuration file (e.g. ~/.bashrc, *~/.zshrc, etc.).

Now your Go installation is complete.




Install git and hg

Git and Mercurial are required to allow go get to clone various dependencies.


	Installing Git [http://git-scm.com/book/en/Getting-Started-Installing-Git]


	Installing Mercurial [https://www.mercurial-scm.org/downloads]






Get the Revel framework

To get the Revel framework, run

go install github.com/revel/cmd/revel@latest





This command does a couple of things:


	Go uses git to clone the repository into $GOPATH/src/github.com/revel/revel/


	Go transitively finds all of the dependencies and runs go get on them as well.





Get and Build the Revel command line tool

The revel command line tool is used
to build, run, and package Revel applications.

Use go get to install:

go get github.com/revel/cmd/revel





Ensure the $GOPATH/bin directory is in your PATH so that you can reference the command from anywhere.

export PATH="$PATH:$GOPATH/bin"





Verify that it works:

$ revel
Usage:
  revel [OPTIONS] <command>

Application Options:
  -v, --debug                If set the logger is set to verbose
      --historic-run-mode    If set the runmode is passed a string not json
      --historic-build-mode  If set the code is scanned using the original parsers, not the go.1.11+
  -X, --build-flags=         These flags will be used when building the application. May be specified multiple times, only applicable for Build, Run, Package, Test commands
      --gomod-flags=         These flags will execute go mod commands for each flag, this happens during the build process

Available commands:
  build
  clean
  new
  package
  run
  test
  version





Next  Create a new Revel application.





          

      

      

    

  

  
    

    title: Introduction layout: tutorial
    

    
 
  

    
      
          
            
  


title: Introduction
layout: tutorial

This tutorial walks through getting started with a very simple Revel app.


	Getting started


	How to get Revel up and running.






	Creating a new Revel app


	How to create a skeleton Revel project.






	The request flow


	Trace the different steps in handling a request.






	Implementing the Hello World app


	Implementing the ‘Hello World’ application in Revel.








Command line interactions are shown for the OSX / Linux environment but should
directly translate into Windows.




          

      

      

    

  

  
    

    title: The Request Flow layout: tutorial
    

    
 
  

    
      
          
            
  


title: The Request Flow
layout: tutorial

In the previous page we created a new Revel application
called myapp. On this page we look at how Revel handles the HTTP request
to http://localhost:9000/ resulting in the welcome message.



Routes

The first thing that Revel does is check the conf/routes file (see routing):

GET     /     App.Index





This tells Revel to invoke the Index method of the App
controller when it receives a http GET request to /.



Controller Methods

Let’s follow this call to the code, in app/controllers/app.go:

package controllers

import "github.com/revel/revel"

type App struct {
    *revel.Controller
}

func (c App) Index() revel.Result {
    return c.Render()
}





All controllers must be a struct that embeds a *revel.Controller [https://godoc.org/github.com/revel/revel#Controller]
in the first slot. Any method on a controller that is
exported and returns a revel.Result may be used as
part of an Action, in the above example App.Index is the Action.

The Revel controller provides many useful methods for generating Results. In
this example, it calls Render() [https://godoc.org/github.com/revel/revel#Controller.Render],
which tells Revel to find and render a template as the response with http 200 OK.



Templates

Templates are  in the app/views directory. When an explicit
template name is not specified, Revel looks for a template matching the controller/method.
In this case, Revel finds the app/views/App/Index.html file, and
renders it using the Template engine.

{% capture ex %}{% raw %}
{{set . “title” “Home”}}
{{template “header.html” .}}


  
    
      It works!

      

    

  


    
    
        {{template "flash.html" .}}
    

    


{{template “footer.html” .}}
{% endraw %}{% endcapture %}
{% highlight htmldjango %}{{ex}}{% endhighlight %}

Beyond the functions provided by the Go templates package, Revel adds
a few helpful ones also.

The template above : -


	Adds a new title variable to the render context with set.


	Includes the header.html template, which uses the title variable.


	Displays a welcome message.


	Includes the flash.html template, which shows any flashed messages.


	Includes the footer.html.




If you look at header.html, you can see some more template tags in action:

{% capture ex %}{% raw %}

_images/YourApplicationIsReady.png
It works!






_images/helpfulerror.png
© 0 0 /' p application error
€ © C fi [ localhost:9000 wED e T I8, A

Go Compilation Error

The Go code sre/myapp/app/controllers/app.go does not compile: c.Renderx undefined (type Application has
no field or method Renderx)

In src/myapp/app/controllers/app.go (around line 10)

‘type Application struct {
| +rev.Controller
[ 7:8%

func (c Application) Index() rev.Result {

return c.Renderx()

}






_images/Tests3.png
fi] localhost [

o
o

AppicationTest v
TesiSometingimpertant un
Content-Type: text/xmi 1= 3 -8
(actual)

Emor | Stack  Headers  Response Body

In Rests/appest go (around line 24):

CAssertontentTypel )

TestThatindexPagaltorks @






_images/Tests4.png
< [in] localhost 4 (B 1B K=l

Test Runner - run your application's tests here.

[ v

[ Testmatindexpageworis o






_static/comment-bright.png





_images/jobs-status.png
[ localhost:3001/@jobs

€  C fi| [} localhost:0001/@jobs

Scheduled Jobs

Name Status Lastrun Nextrun
BookingCounter IDLE 2013-02-17 17:45:52






_static/ajax-loader.gif





_static/comment-close.png





_static/comment.png





_static/down-pressed.png





nav.xhtml

    
  